Генетика сообщение: Доклад-сообщение Генетика 9 класс

Доклад-сообщение Генетика 9 класс

Генетика как наука зародилась в 19 веке, её первооткрывателем стал Грегорий Мендель. Он открыл всему миру дискретность (раздельность) наследственных факторов. Он доказал, что в устройстве каждого живого организма есть так называемые гены (в его время их так не называли, он лишь показал что такие существуют), способные передавать наследственные факторы. Здесь важно понять, что гены передают не сам признак — цвет глаз или рост, а саму возможность развития этих признаков. Когда Мендель совершил своё открытие, никого не интересовал его успех. Зато уже в 1900 году трое биологов переоткрыли его закон, убедившись в достоверности последнего.

Вскоре после подтверждения Мендельского закона, его активно начали использовать — всего за три года вывели новые сорта кукурузы, фасоли, гороха; не остались позади и млекопитающие, первые опыты были проведены на кроликах и мышах. В своё время Мендель совершил самое важное открытие в естествознании за всё столетие, просто он об этом не узнал. Его законы помогли быстро вырваться генетике вперёд.

Вторым шагом в генетике по праву можно считать работу Э. Вильсона, Т. Бовери и У. Сэттона. Продолжая тему своего предшественника, они выяснили, что найденные им гены находятся в хромосомах. Они также доказали, что существует два типа появления новых организмов:

1) Митоз — происходит путём деления материнской клетки с последующим появлением новой;

2) Мейоз — происходит созреванием клеток половым путём.

Их работу продолжил Т. Г. Морган, который доказал что хромосомы в ядре клетки находятся в линейном порядке, и они могут изменить свой порядок при мейозе, что он и назвал изменчивостью.

Ещё одним важным этапом считается развитие данной с участием более точных наук, таких как: математика, химия, биофизика и т.п. Их появление в этой сфере дало возможность следить за жизнью на молекулярном уровне. В качестве объектов изучения были взяты вирусы, микробы и грибы. Их исследования привели к очень важному открытию, согласно которому каждый ген в клетке отвечает за свою функцию, определяет свои признаки из огромного ряда таких же. Как выяснилось, одни гены отвечают за внешние признаки живых организмов, а другие за внутренние. К 1953 году Дж. Уотсон и Ф. Крик нарисовали предполагаемое звено цепи ДНК, которое выглядит как двойная спираль, скрепленная нуклеиновыми основаниями. По всем признакам деления, эта версия подходит идеально, поэтому весь мир знает, как именно выглядит цепочка ДНК.

В последние годы с использованием современных технологий стала развиваться генная инженерия, которая позволяет человеку конструировать цепочки ДНК. Проще говоря, можно взять сильные гены одного организма и привить их более слабому, получив практически идеальный организм. Благодаря этим возможностям людям открываются немыслимые перспективы, ведь после проведения экспериментов на существах, таких как крысы и мыши, станет доступным модификация генов у человека, позволяя ему творить невообразимые вещи.

Вариант №2

Генетика – это наука о закономерности наследственности и изменчивости организмов. Сама наука относительно молодая, однако ее возможности простираются дальше, чем возможности простой медицины.

В основе генетики лежит изучение генома человека, при помощи которого можно определить многое. На данный момент изучение ДНК человека открывает действительно головокружительные возможности. Начиная от определения родства людей, до прогнозирования заболеваний будущего ребенка – все это возможно благодаря достижениям ученых-генетиков.

Первый ученый, который дал большой толчок к последующему развитию, был Грегор Мендель. Еще в 1865 году были опубликованы первые статьи, которые и заложили основу данной науке. Мендель, при проведении опытов на горохе, установил четкие закономерности независимого наследования признаков у гибридного потомства, и вывел три основных закона.

Дальше, в 1909 году Вильгельм Людвиг Иогансен дал название генам, про которые впервые заговорил Грегор Мендель, описывая их в своих статьях как дискретные единицы. А в 1923 году Томас Хант Морган доказал, что гены находятся в хромосомах. С тех пор наука активно развивается по сей день, и достигла головокружительных высот.

Одной из главных задач генетики является изучение процесса передачи определенных признаков от одного поколения к другому и изменчивости данных признаков у потомков. Понимание работы организма человека в будущем поможет избежать наследственных заболеваний или же заболеваний, связанных с мутациями хромосом. Такими, например, являются болезнь Дауна, синдром Тернера, альбинизм, облысение и так далее.

На сегодняшний день удалось расшифровать только 93% генома человека, это действительно важное достижение, поскольку это может помочь продвижению медицины. Гораздо легче будет подбирать правильные лекарства, а также выявить предрасположенность к определенным заболеваниям и возможно даже предотвратить их. Также достижения генетики помогут выявить первопричину многих заболеваний и дать ответ на многие вопросы, например, почему на земле так много организмов или же от кого произошли люди.

Еще одна сфера, на которую окажет влияние генетика – сельскохозяйственная. Благодаря совершенствованию методов переноса гена между разными организмами, можно создать новые сорта растений, а также вывести новые породы животных.

9 класс по биологии

Генетика

Генетика

Популярные темы сообщений

  • Березы

    Береза очень распространенное дерево, которое отличается от других своеобразной корой – белой с черными черточками. Возле корня кора довольно грубая с глубокими трещинами. Обычно это большое дерево высотой до 30 метров с огромной кроной яркого зеленого

  • Лавловый лист

    Лавровый лист – это листья лавра благородного, кустарника или дерева, произрастающего в условиях субтропического климата. Является наиболее часто используемой приправой при приготовлении блюд. Лавровый лист добавляют к супам, гуляшам,

  • Коза

    Коза – верный и очень смышлёный друг человека, они узнают своих хозяев и всегда ластятся к ним. Это животное человек одомашнил около 10 тысяч лет назад, то есть ещё раньше, чем наших любимых кошек и собак.

1. Генетика. История развития науки

Термин «генетика» предложил в \(1905\) году У. Бэтсон.

Генетика — наука, изучающая закономерности наследственности и изменчивости организмов.

Наследственностью называется свойство организмов передавать потомкам особенности строения, физиологические свойства и характер индивидуального развития.

 

Изменчивостью называется способность живых организмов изменять свои признаки.

 

В своём развитии генетика прошла ряд этапов.

 

Наследственностью люди интересовались очень давно. С развитием сельского хозяйства сформировалась прикладная наука селекция, которая занималась созданием и формированием новых пород животных и сортов растений. Но объяснить механизмы передачи признаков потомкам селекционеры не могли.

 

  

Первый этап развития генетики — изучение наследственности и изменчивости на организменном уровне.

  

Этот этап связан с работами Г. Менделя. В \(1865\) г. в работе «Опыты над растительными гибридами» он описал результаты своих исследований закономерностей наследования признаков у гороха.

 

Г. Мендель установил дискретность (делимость) наследственных факторов и разработал гибридологический метод изучения наследственности.

 

Дискретность наследственности состоит в том, что отдельные свойства и признаки организма развиваются под контролем наследственных факторов, которые при слиянии гамет и образовании зиготы не смешиваются, а при формировании новых гамет наследуются независимо друг от друга.

 

В \(1909\) г. В. Иоганнсен назвал эти факторы генами.

 

Значение открытий Г. Менделя оценили только после того, как его результаты были подтверждены в \(1900\) г. тремя биологами независимо друг от друга: Х. де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии. Этот год считается годом возникновения науки генетики.

 

Менделевские законы наследственности заложили основу теории гена, а генетика превратилась в быстро развивающуюся отрасль биологии.

 

В \(1901\)–\(1903\) гг.

де Фриз выдвинул мутационную теорию изменчивости, которая сыграла большую роль в дальнейшем развитии генетики.

 

Второй этап развития генетики — изучение закономерностей наследования признаков на хромосомном уровне.

 

Была установлена взаимосвязь между менделевскими законами наследования и распределением хромосом в процессе клеточного деления (митоз) и созревания половых клеток (мейоз).

 

Изучение строения клетки привело к уточнению строения, формы и количества хромосом и помогло установить, что гены — это участки хромосом.

 

В  \(1910\)–\(1911\) гг. американский генетик Т. Г. Морган и его сотрудники провели исследования закономерностей наследования на мушках дрозофилах. Они установили, что гены расположены в хромосомах в линейном порядке и образуют группы сцепления.

 

Морган установил также закономерности наследования признаков, сцепленных с полом.

 

Эти открытия позволили сформулировать хромосомную теорию наследственности.

 

Третий этап развития генетики — изучение наследственности и изменчивости на молекулярном уровне.

 

На этом этапе были изучены взаимоотношения между генами и ферментами и сформулирована теория «один генодин фермент»: каждый ген контролирует синтез одного фермента, а фермент контролирует одну биохимическую реакцию.

 

В \(1953\) г. Ф. Крик и Дж. Уотсон создали модель молекулы ДНК в виде двойной спирали и объяснили способность ДНК к самоудвоению. Стал понятен механизм изменчивости: любые отклонения в структуре гена, однажды возникнув, в дальнейшем воспроизводятся в дочерних нитях ДНК.

 

Эти положения были подтверждены экспериментами. Уточнилось понятие гена, был расшифрован генетический код и изучен механизм биосинтеза. Были разработаны методы искусственного получения мутаций и с их помощью созданы новые ценные сорта растений и штаммы микроорганизмов.

В последние десятилетия сформировалась генная инженерия — система приёмов, позволяющих синтезировать новый ген или выделить его из одного организма и ввести в генетический аппарат другого организма.

 

В последнее десятилетие  \(20\) века были расшифрованы геномы многих простых организмов. В начала \(21\) века (\(2003\) г.) был завершён проект по расшифровке генома человека.

 

На сегодняшний день существуют базы данных геномов многих организмов. Наличие такой базы данных человека имеет большое значение в предупреждении и исследовании многих заболеваний.

Генетика и ее методология, подготовка к ЕГЭ по биологии

Предмет генетики

Генетика (греч. γενητως — порождающий, происходящий от кого-то) — наука о наследственности и изменчивости. Это определение отлично соответствует афоризму А.П. Чехова «Краткость — сестра таланта». В словах наследственность и изменчивость скрыта вся сущность генетики, к изучению которой мы приступаем.

Грегор Мендель

Наследственность подразумевает возможность передачи из поколения в поколение различных признаков и свойств, общих особенностей развития. Это происходит благодаря способности ДНК к самоудвоению (репликации) и дальнейшему равномерному распределению генетического материала.

Изменчивость подразумевает способность организмов приобретать новые признаки, которые отличают их от родительских особей. Вследствие этого формируется материал для главного направленного фактора эволюции — естественного отбора, который отбирает наиболее приспособленных особей.

Мы с вами истинное чудо генетики 🙂 Очевидно, что в чем-то мы схожи с собственными родителями, в чем-то отличаемся от них. Гены, которые собраны в нас, уже миллионы лет передаются из поколения в поколение, в каждом поколении совершая чудо вновь и вновь.

Отец и сын в одинаковом возрасте
Ген и генетический код

Ген — участок молекулы ДНК, кодирующий последовательность аминокислот для синтеза одного белка. Генетическая информация в ДНК реализуется с помощью процессов транскрипции и трансляции, изученных нами ранее.

Ген

В одной молекуле ДНК зашифрованы сотни тысяч различных белков. Все наши соматические клетки имеют одну и ту же молекулу ДНК. Задумайтесь: почему же в таком случае клетки кожи отличаются от клеток печени, миоцитов, клеток эпителия рта — ведь ДНК везде одинакова!

Это происходит потому, что в разных клетках одни гены «выключены», а другие «активны»: транскрипция идет только с активных генов. Именно из-за этого наши клетки отличаются по строению, функции и форме.

Разнообразие клеток в организме

Способ кодирования последовательности аминокислот в белке с помощью генов — универсальный способ для всех живых организмов, доказывающий единство их происхождения. Выделяют следующие свойства генетического кода:

  • Триплетность
  • Каждой аминокислоте соответствует 3 нуклеотида (триплет ДНК, кодон иРНК). Существует 64 кодона, из которых 3 являются нонсенс кодонами (стоп-кодонами)

  • Непрерывность
  • Информация считывается непрерывно — внутри гена нет знаков препинания: так как ген кодирует один белок, то было бы нецелесообразно разделять его на части. Стоп-кодоны — «знаки препинания» — есть между генами, которые кодируют разные белки.

  • Неперекрываемость
  • Один и тот же нуклеотид не может принадлежать 2,3 и более триплетам ДНК/кодонам иРНК. Он входит в состав только одного триплета.

  • Специфичность (однозначность)
  • Один кодон соответствует строго одной аминокислоте и никакой другой более соответствовать не может.

  • Избыточность (вырожденность)
  • Одна аминокислота может кодироваться несколькими кодонами (при этом одну а/к кодируют 3 нуклеотида.)

    Таблица генетического кода
  • Колинеарность (лат. con — вместе и linea — линия)
  • Соответствие линейной последовательности кодонов иРНК последовательности аминокислот в молекуле белка.

  • Однонаправленность
  • Кодоны считываются строго в одном направлении от первого к последующим. Считывание происходит в процессе трансляции.

    Генетический код
Аллельные гены

Аллельные гены (греч. allélon — взаимно) — гены, занимающие одинаковое положение в локусах гомологичных хромосом и отвечающие за развитие альтернативных признаков. Такими признаками может являться карий и голубой цвет глаз, праворукость и леворукость, вьющиеся и прямые волосы.

Локусом (лат. locus — место) — в генетике обозначают положение определенного гена в хромосоме.

Аллельные гены

Обратите внимание, что гены всегда парные, по этой причине генотип должен быть записан двумя генами — AA, Aa, aa. Писать только один ген было бы ошибкой.

Гены бывают рецессивные (подавляемые) и доминантные (подавляющие альтернативный ген). Доминантным геном (А) является карий цвет, рецессивным (а) — голубой цвет глаз. Именно поэтому у человека с генотипом Aa будет карий цвет глаз: А — доминантный ген подавляет a — рецессивный ген.

Доминантные и рецессивные признаки

Генотип организма (совокупность генов — AA, Aa, aa) может быть описан терминами:

  • Гомозиготный (в случае, когда оба гена либо доминантны, либо рецессивны) — AA, aa
  • Гетерозиготный (в случае, когда один ген доминантный, а другой — рецессивный) — Аа

Понять, какой признак являются подавляемым — рецессивным, а какой подавляющим — доминантным, можно в результате основного метода генетики — гибридологического, то есть путем скрещивания особей и изучения их потомства.

Гаметы

Гамета (греч. gamos — женщина в браке) — половая клетка, образующаяся в результате гаметогенеза (путем мейоза) и обеспечивающая половое размножение организмов. Гамета (сперматозоид/яйцеклетка) имеет гаплоидный набор хромосом — n, при слиянии двух гамет набор восстанавливается до диплоидного — 2n.

Часто в генетических задачах требуется написать гаметы для особей с различным генотипом. Для правильного решения задачи необходимо знать и понимать следующие правила:

  • В гаметах представлены все гены, составляющие гаплоидный набор хромосом — n
  • В каждую гамету попадает только одна хромосома из гомологичной пары
  • Число возможных вариантов гамет можно рассчитать по формуле 2i = n, где i — число генов в гетерозиготном состоянии в генотипе
  • К примеру для особи AABbCCDDEeFfGg количество гамет будет рассчитывать исходя из количества генов в гетерозиготном состоянии, которых в генотипе 4: Bb, Ee, Ff, Gg. Формула будет записана 24 = 16 гамет.

  • Одну гомологичную хромосому ребенок всегда получает от отца, другую — от матери
  • Организмы, у которых проявляется рецессивный признак — гомозиготны (аа). У гетерозигот всегда проявляется доминантный ген (гетерозигота — Aa)

Осознайте изученные правила и посмотрите на картинку ниже. Здесь мы образуем гаметы для различных особей: AA, Aa, aa. При решении генетических задач гаметы принято обводить в кружок, не следует повторяться при написании гамет — это ошибка.

К примеру, у особи «AA» мы напишем только одну гамету «А» и не будем повторяться, а у особи «Aa» напишем два типа гамет «A» и «a», так как они различаются между собой.

Образование гамет
Гибридологический метод

Мы приступаем к изучению методологии генетики, то есть тех методов, которые использует генетика. Один из первых методов генетики, предложенный самим Грегором Менделем — гибридологический.

Этот метод основан на скрещивании организмов между собой и дальнейшем анализе полученного потомства от данного скрещивания. С помощью гибридологического метода возможно изучение наследственных свойств организмов, определение рецессивных и доминантных генов.

Гибридологический метод
Цитогенетический метод

С помощью данного метода становится возможным изучение наследственного материала клетки. Врач-генетик может построить карту хромосом пациента (кариотип) и на основании этого сделать вывод о наличии или отсутствии наследственных заболеваний.

Если быть более точным, кариотипом называют совокупность признаков хромосом: строения, формы, размера и числа. При наследственных заболеваниях может быть нарушена структура хромосом (часто летальный исход), иногда нарушено их количество (синдром Дауна, Шерешевского-Тернера, Клайнфельтера).

Цитогенетический метод исследования
Генеалогический метод (греч. γενεαλογία — родословная)

Генеалогический метод является универсальным методом медицинской генетики и основан на составлении родословных. Человек, с которого начинают составление родословной — пробанд. В результате изучения родословной врач-генетик может предположить вероятность возникновения тех или иных заболеваний.

Правила написания родословной

По мере изучения законов Менделя, хромосомной теории, я непременно буду обращать ваше внимание на родословные. Вы научитесь видеть детали, по которым можно будет сказать об изучаемом признаке: «рецессивный он или доминантный?», «сцеплен с полом или не сцеплен?»

Генеалогический метод

На предложенной родословной в поколениях семьи хорошо прослеживается наследование не сцепленного с полом (аутосомного) рецессивного признака (например, альбинизма). Это можно определить по ряду признаков, которые я в следующих статьях научу вас видеть. Аутосомно-рецессивный тип наследования можно заподозрить, если:

  • Заболевание проявляется только у гомозигот
  • Родители клинически здоровы
  • Если больны оба родителя, то все их дети будут больны
  • В браке больного со здоровым рождаются здоровые дети (если здоровый не гетерозиготен)
  • Оба пола поражаются одинаково

Сейчас это может показаться сложным, но не волнуйтесь — решая генетические задачи вы сами «дойдете» до этих правил, и через некоторое время они будут казаться вам очевидными.

Близнецовый метод

Применение близнецового метода в генетике — вопрос удачи. Ведь для этого нужны организмы, чьи генотипы похожи «один в один»: такими являются однояйцевые близнецы, их появление подчинено случайности.

Близнецовый метод

Близнецовый метод изучает влияние наследственных факторов и внешней среды на формирование фенотипа — совокупности внешних и внутренних признаков организма. К фенотипу относят физические черты: размеры частей тела, цвет кожи, форму и особенности строения внутренних органов и т.д.

Часто изучению подвергают склонность к различным заболеваниям. Интересный факт: если психическое расстройство — шизофрения — развивается у первого из однояйцевых близнецов, то у второго она возникает с вероятностью 90%. Таким образом, удается сделать вывод о значительной доле наследственного фактора в развитии данного заболевания.

Гебефреническая шизофрения

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

ГЕНЕТИКА | Энциклопедия Кругосвет

Содержание статьи

ГЕНЕТИКА, наука, изучающая наследственность и изменчивость – свойства, присущие всем живым организмам. Бесконечное разнообразие видов растений, животных и микроорганизмов поддерживается тем, что каждый вид сохраняет в ряду поколений характерные для него черты: на холодном Севере и в жарких странах корова всегда рождает теленка, курица выводит цыплят, а пшеница воспроизводит пшеницу. При этом живые существа индивидуальны: все люди разные, все кошки чем-то отличаются друг от друга, и даже колоски пшеницы, если присмотреться к ним повнимательнее, имеют свои особенности. Два эти важнейшие свойства живых существ – быть похожими на своих родителей и отличаться от них – и составляют суть понятий «наследственность» и «изменчивость».

Истоки генетики

Истоки генетики, как и любой другой науки, следует искать в практике. С тех пор как люди занялись разведением животных и растений, они стали понимать, что признаки потомков зависят от свойств их родителей. Отбирая и скрещивая лучших особей, человек из поколения в поколение создавал породы животных и сорта растений с улучшенными свойствами. Бурное развитие племенного дела и растениеводства во второй половине 19 в. породило повышенный интерес к анализу феномена наследственности. В то время считали, что материальный субстрат наследственности – это гомогенное вещество, а наследственные субстанции родительских форм смешиваются у потомства подобно тому, как смешиваются друг с другом взаиморастворимые жидкости. Считалось также, что у животных и человека вещество наследственности каким-то образом связано с кровью: выражения «полукровка», «чистокровный» и др. сохранились до наших дней.

Неудивительно, что современники не обратили внимания на результаты работы настоятеля монастыря в Брно Грегора Менделя по скрещиванию гороха. Никто из тех, кто слушал доклад Менделя на заседании Общества естествоиспытателей и врачей в 1865, не сумел разгадать в каких-то «странных» количественных соотношениях, обнаруженных Менделем при анализе гибридов гороха, фундаментальные биологические законы, а в человеке, открывшем их, основателя новой науки – генетики. После 35 лет забвения работа Менделя была оценена по достоинству: его законы были переоткрыты в 1900, а его имя вошло в историю науки.

Законы генетики

Законы генетики, открытые Менделем, Морганом и плеядой их последователей, описывают передачу признаков от родителей к детям. Они утверждают, что все наследуемые признаки определяются генами. Каждый ген может быть представлен в одной или большем числе форм, названных аллелями. Все клетки организма, кроме половых, содержат по два аллеля каждого гена, т.е. являются диплоидными. Если два аллеля идентичны, организм называют гомозиготным по этому гену. Если аллели разные, организм называют гетерозиготным. Клетки, участвующие в половом размножении (гаметы), содержат только один аллель каждого гена, т.е. они гаплоидны. Половина гамет, производимых особью, несет один аллель, а половина – другой. Объединение двух гаплоидных гамет при оплодотворении приводит к образованию диплоидной зиготы, которая развивается во взрослый организм.

Гены – это определенные фрагменты ДНК; они организованы в хромосомы, находящиеся в ядре клетки. Каждый вид растений или животных имеет определенное число хромосом. У диплоидных организмов число хромосом парное, две хромосомы каждой пары называются гомологичными. Скажем, человек имеет 23 пары хромосом, при этом один гомолог каждой хромосомы получен от матери, а другой – от отца. Имеются и внеядерные гены (в митохондриях, а у растений – еще и в хлоропластах).

Особенности передачи наследственной информации определяются внутриклеточными процессами: митозом и мейозом. Митоз – это процесс распределения хромосом по дочерним клеткам в ходе клеточного деления. В результате митоза каждая хромосома родительской клетки удваивается и идентичные копии расходятся по дочерним клеткам; при этом наследственная информация полностью передается от одной клетки к двум дочерним. Так происходит деление клеток в онтогенезе, т.е. процессе индивидуального развития. Мейоз – это специфическая форма клеточного деления, которая имеет место только при образовании половых клеток, или гамет (сперматозоидов и яйцеклеток). В отличие от митоза, число хромосом в ходе мейоза уменьшается вдвое; в каждую дочернюю клетку попадает лишь одна из двух гомологичных хромосом каждой пары, так что в половине дочерних клеток присутствует один гомолог, в другой половине – другой; при этом хромосомы распределяются в гаметах независимо друг от друга. (Гены митохондрий и хлоропластов не следуют закону равного распределения при делении.) При слиянии двух гаплоидных гамет (оплодотворении) вновь восстанавливается число хромосом – образуется диплоидная зигота, которая от каждого из родителей получила по одинарному набору хромосом.

Методические подходы.

Благодаря каким особенностям методического подхода Мендель сумел сделать свои открытия? Для своих опытов по скрещиванию он выбрал линии гороха, отличающиеся по одному альтернативному признаку (семена гладкие или морщинистые, семядоли желтые или зеленые, форма боба выпуклая или с перетяжками и др.). Потомство от каждого скрещивания он анализировал количественно, т.е. подсчитывал число растений с этими признаками, что до него никто не делал. Благодаря этому подходу (выбору качественно различающихся признаков), который лег в основу всех последующих генетических исследований, Мендель показал, что признаки родителей не смешиваются у потомков, а передаются из поколения в поколение неизменными.

Заслуга Менделя состоит еще и в том, что он дал в руки генетиков мощный метод исследования наследственных признаков – гибридологический анализ, т.е. метод изучения генов путем анализа признаков потомков от определенных скрещиваний. В основе законов Менделя и гибридологического анализа лежат события, происходящие в мейозе: альтернативные аллели находятся в гомологичных хромосомах гибридов и потому расходятся поровну. Именно гибридологический анализ определяет требования к объектам общих генетических исследований: это должны быть легко культивируемые организмы, дающие многочисленное потомство и имеющие короткий репродуктивный период. Таким требованиям среди высших организмов отвечает плодовая мушка дрозофила – Drosophila melanogaster. На многие годы она стала излюбленным объектом генетических исследований. Усилиями генетиков разных стран на ней были открыты фундаментальные генетические явления. Было установлено, что гены расположены в хромосомах линейно и их распределение у потомков зависит от процессов мейоза; что гены, расположенные в одной и той же хромосоме, наследуются совместно (сцепление генов) и подвержены рекомбинации (кроссинговер). Открыты гены, локализованные в половых хромосомах, установлен характер их наследования, выявлены генетические основы определения пола. Обнаружено также, что гены не являются неизменными, а подвержены мутациям; что ген – сложная структура и имеется много форм (аллелей) одного и того же гена.

Затем объектом более скрупулезных генетических исследований стали микроорганизмы, на которых стали изучать молекулярные механизмы наследственности. Так, на кишечной палочке Escheriсhia coli было открыто явление бактериальной трансформации – включение ДНК, принадлежащей клетке донора, в клетку реципиента – и впервые доказано, что именно ДНК является носителем генов. Была открыта структура ДНК, расшифрован генетический код, выявлены молекулярные механизмы мутаций, рекомбинации, геномных перестроек, исследованы регуляция активности гена, явление перемещения элементов генома и др. (см. КЛЕТКА; НАСЛЕДСТВЕННОСТЬ; МОЛЕКУЛЯРНАЯ БИОЛОГИЯ). Наряду с указанными модельными организмами генетические исследования велись на множестве других видов, и универсальность основных генетических механизмов и методов их изучения была показана для всех организмов – от вирусов до человека.

Достижения и проблемы современной генетики.

На основе генетических исследований возникли новые области знания (молекулярная биология, молекулярная генетика), соответствующие биотехнологии (такие, как генная инженерия) и методы (например, полимеразная цепная реакция), позволяющие выделять и синтезировать нуклеотидные последовательности, встраивать их в геном, получать гибридные ДНК со свойствами, не существовавшими в природе. Получены многие препараты, без которых уже немыслима медицина (см. ГЕННАЯ ИНЖЕНЕРИЯ). Разработаны принципы выведения трансгенных растений и животных, обладающих признаками разных видов. Стало возможным характеризовать особей по многим полиморфным ДНК-маркерам: микросателлитам, нуклеотидным последовательностям и др. Большинство молекулярно-биологических методов не требуют гибридологического анализа. Однако при исследовании признаков, анализе маркеров и картировании генов этот классический метод генетики все еще необходим.

Как и любая другая наука, генетика была и остается оружием недобросовестных ученых и политиков. Такая ее ветвь, как евгеника, согласно которой развитие человека полностью определяется его генотипом, послужила основой для создания в 1930–1960-е годы расовых теорий и программ стерилизации. Напротив, отрицание роли генов и принятие идеи о доминирующей роли среды привело к прекращению генетических исследований в СССР с конца 1940-х до середины 1960-х годов. Сейчас возникают экологические и этические проблемы в связи с работами по созданию «химер» – трансгенных растений и животных, «копированию» животных путем пересадки клеточного ядра в оплодотворенную яйцеклетку, генетической «паспортизации» людей и т.п. В ведущих державах мира принимаются законы, ставящие целью предотвратить нежелательные последствия таких работ.

Современная генетика обеспечила новые возможности для исследования деятельности организма: с помощью индуцированных мутаций можно выключать и включать почти любые физиологические процессы, прерывать биосинтез белков в клетке, изменять морфогенез, останавливать развитие на определенной стадии. Мы теперь можем глубже исследовать популяционные и эволюционные процессы (см. ПОПУЛЯЦИОННАЯ ГЕНЕТИКА), изучать наследственные болезни (см. ГЕНЕТИЧЕСКОЕ КОНСУЛЬТИРОВАНИЕ), проблему раковых заболеваний и многое другое. В последние годы бурное развитие молекулярно-биологических подходов и методов позволило генетикам не только расшифровать геномы многих организмов, но и конструировать живые существа с заданными свойствами. Таким образом, генетика открывает пути моделирования биологических процессов и способствует тому, что биология после длительного периода дробления на отдельные дисциплины вступает в эпоху объединения и синтеза знаний.

Гены и генетика. Клонирование и наследственность

Почему ты похож на родителей? Почему у тебя такой же цвет глаз или волос, как у мамы или папы? Что такое гены и как они работают? Чем прославилась овечка Долли? Ответы на эти и многие другие вопросы дает генетика.

Что изучает генетика?

Генетика изучает, каким образом передаются отличительные признаки клеток из одного поколения в другое Это наука о том, как от родителей к детям передаются цвет глаз, форма носа, рост и даже определенные черты характера. Но не думай, что генетика занимается изучением только человека. Наследственность характерна для всех живых существ. И растения, и животные также передают характерные им черты из поколения в поколение.

Семейное древо

Зарождение генетики

Какого цвета твои глаза, волосы, кожа? Почему у тебя такие же вьющиеся волосы, как и у твоей мамы? Почему ты очень похож на своих родителей, но не являешься их полной копией? Почему листики одного дерева такие разные? Ответы на все эти вопросы дает один из самых интересных разделов биологии — генетика.

Первые шаги

В течение очень длительного периода людям была непонятна причина схожести родственных организмов. Ситуация изменилась в 60-х гг. XX в., когда австрийский биолог и ботаник, монах августинского монастыря в Брно Грегор Мендель начал проводить опыты на горохе в монастырском саду. Он хотел узнать, каким образом определенные признаки живых существ передаются из одного поколения в другое.

Грегор Мендель

Грегор Мендель

Следующий научный шаг в изучении генетики был сделан в 1909 г. датским биологом профессором Вильгельмом Иогансеном, который ввел и объяснил термин «ген». Несколько позже, в 1923 г., американский биолог Томас Морган доказал, что гены находятся в хромосомах, и сформулировал хромосомную теорию наследственности. С тех пор генетика стала развиваться на уровне гена.

Опыты Менделя

Менделя интересовали высота растения, цвет цветков и форма горошин. Занимаясь перекрестным опылением гороха, он тщательно анализировал получаемые результаты и наблюдал, какие именно признаки и в каком поколении передавались по наследству. Причем каждый раз в перекрестном опылении участвовали специально отобранные растения с теми признаками, которые, как думал Мендель, обязательно должны передаться последующему поколению.

В чем заключалась суть экспериментов биолога?

Одним из признаков, которые исследовал Мендель, был цвет цветков гороха. В своих первых опытах он отобрал только те сорта, которые цветут белыми и красными цветками. Мендель был уверен, что после скрещивания в первом поколении (поколение F1) будут растения как с белыми, так и с красными цветками. Каково же было его удивление, когда абсолютно все цветки оказались красными!

Такой результат не только не остановил ученого, но и заставил продолжить эксперименты. Мендель опылил цветки полученных растений первого поколения их же пыльцой и ожидал совершенно логичного результата — красных цветков. Но снова его предположения не оправдались: во втором поколении (поколение F2) 75% всех цветков были красными, а оставшиеся 25% — белыми!

наследственность

В чем причина?

Такой неожиданный результат вовсе не огорчил ученого. Благодаря полученным данным он пришел к выводу о том, что у каждого растения не один, а два гена, которые принимают участие в передаче определенных признаков. Он назвал красный цвет гороха главным, доминантным, а белый — рецессивным, уступающим признаком.

При наличии двух разных генов (например, красного и белого), определяющим при цветении будет доминантный ген. Поэтому, если у растения есть оба гена (красный и белый), на цвет цветка будет влиять доминантный ген красного цвета. А тот факт, что среди дочерних растений могут быть и цветки белого цвета, говорит лишь о наличии этого гена у растения.

У одного и того же гена может быть две или более разновидностей: одна — сильная, вторая — слабая. Сильная разновидность называется доминирующей, а слабая — рецессивной.

Роль генов

Главная заслуга Грегора Менделя заключается в том, что он изложил основы генетики — принципы передачи наследственных признаков от родителей к потомкам. Мендель пришел к выводу о том, что в живом организме за любой наследуемый признак (рост, цвет глаз, волос, кожи, форма уха у человека, листа и стебля у растений и т.д.) отвечают два гена. И во время воспроизводства каждый родитель отдает своему потомку только один ген из каждой пары. Это означает, что дочернее поколение наследует по одному гену у каждого родителя, и таким образом в организме потомка образуется новая пара генов.

Что такое ген?

Гены — это носители наследственной информации. По сути эти мельчайшие структуры несут очень четкую «инструкцию по эксплуатации» нашего организма. Гены представляют собой участки ДНК, несущие информацию о наличии определенных признаков и следящие за тем, чтобы развитие организма происходило строго в соответствии с этими данными. В каждой клетке человека находится от 25 000 до 35 000 генов, содержащих специфические биологические коды, или информацию, которую живые существа наследуют от своих родителей.

Гены и рост клеток

С ростом человека число клеток увеличивается. При этом каждая часть тела состоит из определенных клеток кожи, мышц, внутренних органов и т.д, — имеющих разное назначение и свойства. У тебя может возникнуть логичный вопрос откуда клетки знают, где им расти? Почему на месте рук всегда вырастают руки, а не нос? Об этом даже подумать страшно! Конечно, теоретически такая опасность есть, но мудрая природа придумала молекулу, в которой зашифрован весь план нашего развития, — молекулу ДНК. Она есть внутри абсолютно каждой клетки нашего организма.

Именно ДНК содержит информацию о том, что и где у нас вырастет. Эту молекулу каждый из нас получает в наследство от родителей. Поэтому мы и похожи на них. У каждого живого существа своя молекула ДНК которая определяет наличие хвоста, рогов, длинных ушей и т.д. За каждый из этих признаков отвечает отдельный участок ДНК который называется ген. Ученые подсчитали, что таких генов более 30 000.

ДНК

«ДНК» расшифровывается как «дезоксирибонуклеиновая кислота».Эта молекула обеспечивает хранение и передачу генетической информации из одного поколения в другое. Благодаря информации, содержащейся в генах, мы наследуем определенные признаки от своих родителей: цвет глаз, волос и кожи, рост, структуру волос, форму ногтей и пальцев и многое другое.

Генетика занимается не только изучением, но и изменением генов. Например, уже сегодня биологи научились менять гены некоторых растений. Эти растения так и называются — генно-модифицированные. Так, биологи вывели сорта помидоров, которые менее прочих чувствительны к холоду, а также несъедобные для насекомых овощи.

Хромосомы человека (всего 46)

Хромосомы человека (всего 46)

Где расположены гены?

Гены находятся в небольших элементах, похожих на спагетти, которые называются хромосомы. Хромосомы расположены в ядре клетки. Следует иметь в виду, что у различных живых организмов количество хромосом разное. В клетке человека находятся 23 пары хромосом, т.е. 46 в каждой клетке причем одна половина хромосом достается от одного родителя, другая — от другого.

Две хромосомы, отвечающие за пол

Две последние из 46 хромосом (X и У) определяют пол человека. Девочка наследует две Х-хромосомы, а мальчик — одну Х-хромосому и одну У-хромосому.

Как работают гены?

Каждый ген выполняет свою работу. ДНК в гене выдает особые инструкции (такие же, как, например, в кулинарных книгах) для производства белка в клетке.

Белки — это строительные «кирпичики» нашего организма. Кости и зубы, кровь и мышцы, волосы и ушные раковины — все эти органы состоят из белков, которые помогают нашему организму расти, изменяться и оставаться здоровым

Наследственная информация животного и растительного мира

Гены передают наследственную информацию не только у человека, этот процесс свойственен всем живым организмам. Именно поэтому вокруг нас такое разнообразие животных и растений. Взять, например, породы собак. Для каждой породы характерны свои отличительные признаки, которые передаются из одного поколения в другое. Одни собаки очень маленькие, другие — очень большие. У одних длинная шелковистая шерсть, у других ее и вовсе нет.

У собак породы далматин есть гены, отвечающие за количество черных и белых пятен. Волнистая шерсть карликового пуделя и пятна на шкуре жирафа также определяются особыми генами, передающими этот признак по наследству.

Что произойдет, если ген окажется поврежденным?

Сегодня гены являются предметом скрупулезного изучения генетиков всего мира. Ученые хотят достоверно знать, какие именно белки вырабатываются каждым геном и за что именно отвечает каждый белок. Их также интересуют заболевания, вызванные тем, что какой-то ген имеет измененную структуру и неправильно выполняет свою работу. Изменение гена называется мутацией.

По мнению исследователей, именно мутации являются одной из причин многих серьезных заболеваний, например рака. Менее значительные проблемы со здоровьем возникают в случае нехватки гена или наличия лишних частей гена в хромосоме.

Клонирование

Скорее всего, ты слышал о знаменитой овечке Долли. Это первое существо, полученное путем клонирования взрослого животного. Почему именно взрослого? Дело в том, что искусственное клонирование животных началось с 60-х гг. XX в. В течение 35 лет ученым удалось клонировать лягушку, мышь и даже несколько овечек. Но генетический материал для этих клонов был взят на стадии эмбрионов, а Долли получила мировое признание, так как была клонирована на основе материала, взятого у взрослого животного.

ящерица

В природе широко распространено естественное клонирование. У многих растений образование новой особи происходит вегетативно, т.е. из части организма родителя. Естественное клонирование происходит у некоторых видов ящериц и броненосцев. Самки и самцы огненных муравьев также клонируются независимо друг от друга. У  человека естественными клонами являются идентичные (однояйцовые) близнецы

Что такое клонирование?

Клонирование — это создание организма с тем же набором генов, который содержится в исходной копии. Это означает, что полученный клон генетически идентичен тому организму, из которого взята ДНК. Ты уже знаешь, что любое живое существо вырастает из одной яйцеклетки, при этом половину генетического материала оно получает от одного родителя, а вторую половину — от другого.

В случае клонирования весь генетический материал берется из клетки одной особи. Происходит это следующим образом: из оплодотворенной яйцеклетки удаляется ядро и переносится в другую, неоплодотворенную яйцеклетку, ядро которой было предварительно удалено. Затем эта яйцеклетка пересаживается суррогатной матери. Сейчас такая процедура успешно применяется для клонирования различных животных: крыс, кошек, собак, коров и т.д.

Клонирование овечки Долли

В 1996 г. стало известно о первом удачном опыте клонирования млекопитающих. В результате многочисленных экспериментов, проведенных под руководством британского эмбриолога Яна Уилмута, родилась овечка Долли.

Ягненок Долли

Ягненок Долли, родившийся 5 июля 1996 г., оказался первой генетической копией другого организма — донора клетки. Однако далеко не все попытки клонирования овцы были удачными. В ходе эксперимента ученые заменили ДНК в 277 яйцеклетках, из которых около 30 смогли развиться до состояния Эмфиона, а выжило и выросло только одно животное!

Для клонирования Долли были использованы клетки вымени взрослой овцы-донора. Причем брались замороженные клетки уже умершего к тому времени животного. Интересно, что в случае с Долли суррогатной матерью была овца с черной шерстью, а Долли родилась с белой, т.е. точно такой же, как и овца, у которой был взят генетический материал.

Если ли у Долли родители?

Каждый из нас является результатом объединения генов, полученных от мамы и от папы. Поэтому каждый ген в нашем организме присутствует в двух экземплярах: один — от папы, один — от мамы.

Что касается клонирования овечки Долли, то у нее не было ни отца, ни матери. Ведь для создания клона была взята неоплодотворенная яйцеклетка от одной особи.

Из этой яйцеклетки убрали всю генетическую информацию, т.е. ядро, и ввели генетическую информацию от другой овцы (из клетки ее вымени).

В результате такого слияния возникла яйцеклетка, в которой был двойной набор генов, но не потому, что одна половина из них была от папы, а вторая половина — от мамы, а потому, что из клетки второй овцы было взято ядро с двойным набором генов. Затем эту яйцеклетку подсадили в организм третьей овцы — суррогатной матери. Вряд ли этих животных можно считать родителями Долли.

С точки зрения генетики, Долли является полным клоном того животного, из клетки вымени которого было взято ядро.

Можно ли клонировать мамонтов?

Казалось бы, какая разница, кого клонировать? В случае с мамонтами, например, в качестве суррогатной матери можно использовать слониху, в качестве донора энуклеированной (безъядерной) яйцеклетки — тоже, а источником генетической информации мамонта могут стать очень хорошо сохранившиеся в условиях вечной мерзлоты останки этих животных.

По данным ученых клеточная структура таких останков представлена довольно хорошо: в клетках есть белки, ядра, ДНК и т.д. Казалось бы, чисто технически все компоненты клонирования в наличии. Однако возникает вопрос сможет ли генетическая информация мамонта реализовать заложенную в ней программу в условиях Яйцеклетки слона? Слон и мамонт — близкие виды, но не идентичные. Несмотря на внешнюю похожесть, на генетическом уровне у них миллионы различий (как, например, у человека и шимпанзе). Может случиться так, что генетическая программа мамонта не будет работать в яйцеклетке слона.

Скелет мамонта

Скелет мамонта

Еще одна проблема — состояние ДНК останков мамонта. Все дело в том, что под действием множества факторов очень длинная молекула ДНК со временем распадается. Генетическая информация мамонта представлена в виде определенного генетического текста, благодаря которому можно понять принадлежность ДНК именно этому биологическому виду.

Для клонирования мамонта нужно найти ядро клетки с неповрежденной ДНК. Это не так-то просто: в клетках большинства доступных ученым останков молекула ДНК уже наверняка разделилась на нескольких кусочков. Восстановить ее — это примерно то же самое, что разорвать журнал на множество мельчайших клочков, а потом пытаться собрать его. Так что клонирование мамонтов по-прежнему остается вопросом будущего.

Поделиться ссылкой

Генетика человека

Генетика человека как наука

Практически все науки, созданные человеком, преследуют единую цель – удовлетворение познавательных интересов человека и применение полученных знания на практике для достижения человеком определенных целей. Не является исключением и генетика. Задолго до появления генетики человечество стремилось разгадать тайну наследственности внешних и внутренних признаков человеческого организма, бороться с «родовыми» заболеваниями, преследовавшими целые династии.

С оформлением генетики как самостоятельной отрасли биологии, начали развиваться различные направления этой молодой науки. Ученые изучали микроорганизмы, грибы, растения, животных. Отдельное направление генетики изучало человека.

Определение 1

Генетика человека – это отдельный раздел генетической науки, который изучает особенности проявления наследственности и изменчивости у человека, наследственные заболевания, генетическую структуру популяций человека.

Эта отрасль дает теоретическое обоснование многим отраслям современной медицины. Кроме медицины, генетика человека тесно связана с антропологией и эволюционной теорией, психологией и социологией.

Готовые работы на аналогичную тему

Особенности методов генетики человека

Так как человек – существо биосоциальное, то не все методы, применяемые для исследования природных явлений, могут быть использованы для изучения человека. Некоторые из методов просто неприемлемы по этическим и гуманным соображениям.

Так, например, нельзя осуществлять направленное скрещивание или экспериментировать с мутационным процессом у человека (хотя, в годы второй мировой войны в гитлеровских концлагерях эсэсовские «ученые» проводили бесчеловечные опыты над заключенными). Кроме того, у человека имеются свои биологические особенности, осложняющие процесс изучения тех или иных явлений. Из-за позднего полового созревания и малочисленного потомства очень сложно вести элементарный статистический анализ. Поэтому при выборе доступных методов исследования ученые обязаны учитывать особенности и сложности человека как генетического объекта.

Генеалогический метод

Одним из классических методов генетики, широко применяемом в генетике человека, является генеалогический метод. Его суть состоит в изучении родословных (генеалогических древ) семей. Особое внимание ученые обращают на изучение и анализ распределения аномальных признаков в семьях, обладающих этим признаком (талант к чему-либо или характерный внешний признак, или наследственное заболевание). Обязательно учитывается и степень родства с носителем данного признака.

Замечание 1

На сегодняшний день этот метод позволил доказать, что большое количество признаков у людей наследуется в полном соответствии с законами Менделя. Доказано, также, что некоторые признаки сцеплены с полом и локализованы в $X$-хромосоме.

Близнецовый метод

Еще один эффективный метод исследования – близнецовый метод. Он состоит в изучении однояйцевых близнецов. Однояйцевые близнецы развиваются из одной яйцеклетки и имеют идентичный генотип. Разнояйцевые близнецы отличаются по генотипу, поскольку разные яйцеклетки оплодотворяются разными сперматозоидами. Поэтому их черты менее сходные, чем у однояйцевых.

Этот метод позволяет судить о взаимоотношениях генотипа и условий среды обитания на развитие человека, о вероятности проявления признаков некоторых заболеваний, передающихся по наследству.

Популяционно-статистический метод

Популяционно-статистический метод позволяет изучать частоты встречаемости генов, определяющих проявление тех или иных наследственных заболеваний и нормальных признаков. Особое внимание уделяется изучению замкнутых, изолированных популяций людей (горные аулы и кишлаки, поселения в труднодоступных джунглях и других местах, поселения религиозных общин). Повышение степени кровного родства приводит к переходу рецессивных признаков в гомозиготное состояние и проявление их в фенотипе.

Дерматоглифический метод

Специфическим методом генетики человека является дерматоглифический метод. Он основан на изучении наследственно обусловленных рисунков на кончиках пальцев, ладоней и подошв человека. Эти рисунки уникальные и обусловлены наследственностью. Их формирование происходит еще во внутриутробном периоде развития человеческого организма. В отличии от хиромантии, генетика не предсказывает будущее по линиям руки, а изучает особенности проявления унаследованных черт в различных условиях среды обитания человека и характера его деятельности.

Генетика — Википедия

Гене́тика (от греч. γενητως — порождающий, происходящий от кого-то[1][2][3]) — наука о закономерностях наследственности и изменчивости.

Этот взгляд на генетику не разделяют многие современные учёные. По мнению ведущих североамериканских генетиков, таких, как Энтони Грифитс[4], Джеффри Миллер[5], Девид Судзуки, Ричард Левонтин и др., генетику следует определить как науку о генах:

«….Некоторые определяют её [генетику] как науку о наследственности, хотя наследственные явления представляли интерес для людей задолго до того, как биология и генетика оформились в качестве научных дисциплин. Древние народы улучшали растительные культуры и одомашненных животных, выбирая для разведения экземпляры, обладающие желательными признаками. Большой интерес вызывали у них и такие вопросы, как: «Почему дети напоминают своих родителей?» или «Какие семейные особенности могут влиять на течение различных заболеваний?»

Но этих людей нельзя было назвать генетиками. Генетика как набор принципов и аналитических процедур не существовала до 60-х годов XIX века, когда монах Августинского монастыря Грегор Мендель выполнил ряд экспериментов, указывающих на существование биологических структур, которые мы теперь называем генами.

Генетика происходит от слова «ген», и именно гены находятся в центре внимания исследователей. Это не зависит от того, изучают ли генетики молекулярный, клеточный, организменный, семейный, популяционный или эволюционный уровни. Проще говоря, генетика — это наука о генах.Griffiths, Anthony J. F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart, eds. (2000)[6].
»

В зависимости от объекта исследования классифицируют генетику растений, животных, микроорганизмов, человека и другие; в зависимости от используемых методов других дисциплин — молекулярную генетику, экологическую генетику и другие.

Идеи и методы генетики играют важную роль в медицине, сельском хозяйстве, микробиологической промышленности, а также в генетической инженерии[7].

Введение

Первоначально генетика изучала общие закономерности наследственности и изменчивости только на основании фенотипических данных.

Понимание механизмов наследственности, то есть роли генов как элементарных носителей наследственной информации, хромосомная теория наследственности и т. д. стало возможным с применением к проблеме наследственности методов цитологии, молекулярной биологии и других смежных дисциплин.

Сегодня известно, что гены действительно существуют и являются специальным образом отмеченными участками ДНК или РНК — молекулы, в которой закодирована вся генетическая информация. У эукариотических организмов ДНК свёрнута в хромосомы и находится в ядре клетки. Кроме того, собственная ДНК имеется внутри митохондрий и хлоропластов (у растений). У прокариот ДНК, как правило, замкнута в кольцо (бактериальная хромосома, или генофор) и находится в цитоплазме. Часто в клетках прокариот присутствует молекулы ДНК меньшего размера — плазмиды.

Законы Менделя

  1. Закон единообразия гибридов первого поколения
  2. Закон расщепления признаков
  3. Закон независимого наследования признаков

История

Работы Грегора Менделя

В 1865 году монах Грегор Мендель (занимавшийся изучением гибридизации растений в Августинском монастыре в Брюнне (Брно), ныне на территории Чехии) обнародовал на заседании местного общества естествоиспытателей результаты исследований о передаче по наследству признаков при скрещивании гороха (работа «Опыты над растительными гибридами» была опубликована в трудах общества в 1866 году). Мендель показал, что некоторые наследственные задатки не смешиваются, а передаются от родителей к потомкам в виде дискретных (обособленных) единиц. Сформулированные им закономерности наследования позже получили название законов Менделя. При жизни его работы были малоизвестны и воспринимались критически (результаты опытов на другом растении, ночной красавице, на первый взгляд, не подтверждали выявленные закономерности, чем весьма охотно пользовались критики его наблюдений).

Классическая генетика

В начале XX века работы Менделя вновь привлекли внимание в связи с исследованиями Карла Корренса, Эриха Чермака и Гуго Де Фриза по гибридизации растений, в которых были подтверждены основные выводы о независимом наследовании признаков и о численных соотношениях при «расщеплении» признаков в потомстве.

Вскоре английский натуралист Уильям Бэтсон ввёл в употребление название новой научной дисциплины: генетика (в 1905 году в частном письме и в 1906 году публично). В 1909 году датским ботаником Вильгельмом Йогансеном введён в употребление термин «ген».

Важным вкладом в развитие генетики стала хромосомная теория наследственности, разработанная, прежде всего, благодаря усилиям американского генетика Томаса Ханта Моргана и его учеников и сотрудников, избравших объектом своих исследований плодовую мушку Drosophila melanogaster. Изучение закономерностей сцепленного наследования позволило путём анализа результатов скрещиваний составить карты расположения генов в «группах сцепления» и сопоставить группы сцепления с хромосомами (1910—1913 гг.).

Молекулярная генетика

Эпоха молекулярной генетики начинается с появившихся в 1940—1950-х гг. работ, доказавших ведущую роль ДНК в передаче наследственной информации. Важнейшими шагами стали расшифровка структуры ДНК, триплетного кода, описание механизмов биосинтеза белка, обнаружение рестриктаз и секвенирование ДНК.

Разделы генетики

Модельные организмы

Изначально наследование изучалось у широкого диапазона организмов, однако учёные стали специализироваться на генетике конкретных видов. Модельными становятся те организмы, по которым уже накоплено много научных данных, которые уже исследовались и легко содержатся в лабораторных условиях. Модельные организмы выбирались отчасти благодаря приоритетности — короткому времени генерации (быстрой смены поколений) и возможности генетических манипуляций. В результате, в генетических исследованиях некоторые виды стали основными[8].

К широко используемым в генетических исследованиях модельным организмам относят бактерию Escherichia coli, растение Arabidopsis thaliana, дрожжи Saccharomyces cerevisiae, нематоду Caenorhabditis elegans, плодовую муху Drosophila melanogaster и обыкновенную домовую мышь (Mus musculus).

См. также

Примечания

Литература

  • Айала Ф., Кайгер Дж. Современная генетика: В 3 т. М.: Мир, 1987—1988. Т. 1. 295 с. Т. 2 368 с. Т. 3. 335 с.
  • Алиханян С. И., Акифьев А. П., Чернин Л. С. Общая генетика. — М.: Высш. шк., 1985. — 446 с.
  • Гершензон С. М. Основы современной генетики. — Киев: Наук. думка, 1983. — 558 с.
  • Гершкович И. Генетика. — М.: Наука, 1968. — 698 с.
  • Дубинин Н. П. Генетика. — Кишинёв: Штииница, 1985. — 533 с.
  • Жимулёв И. Ф. Общая и молекулярная генетика: учебное пособие для студентов университетов, обучающихся по направлению 510600 — Биология и биологическим специальностям. — 2-е, испр. и доп. — Новосибирск: Новосибирск : Сиб. унив. изд-во, 2003. — 478 с. — 2500 экз. — ISBN 5-94087-077-5
  • Инге-Вечтомов С. Г. Генетика с основами селекции. 2-е изд., перераб. и доп. — СПб.: 2010. — 720 с.
  • Клаг Уильям С., Каммингс Майкл Р. Основы генетики. — М.: Техносфера, 2007. — 896 с.
  • Льюин Б. Гены: Пер. с англ. — М.: Мир, 1987. — 544 с.
  • Пухальский В. А. Введение в генетику. — М.: КолосС, 2007. — 224 с. (Учебники и учеб. пособия для студентов высш. учеб. заведений)
  • Сингер М., Берг П. Гены и геномы: В 2 т. М.: Мир, 1998. Т. 1. 373 с. Т. 2. 391 с.
  • Мюнтцинг А. Генетика. — М.: Мир, 1967. — 610 с.

Ссылки

важных MCQ по генетике. Бесплатная загрузка

    • Классы
      • Класс 1-3
      • Класс 4-5
      • Класс 6-10
      • Класс 11-12
    • КОНКУРСНЫЙ ЭКЗАМЕН
      • BNAT 000 NC
        • 000 NC Книги
          • Книги NCERT для класса 5
          • Книги NCERT для класса 6
          • Книги NCERT для класса 7
          • Книги NCERT для класса 8
          • Книги NCERT для класса 9
          • Книги NCERT для класса 10
          • Книги NCERT для класса 11
          • Книги NCERT для класса 12
        • NCERT Exemplar
          • NCERT Exemplar Class 8
          • NCERT Exemplar Class 9
          • NCERT Exemplar Class 10
          • NCERT Exemplar Class 11
          • NCERT 9000 9000
          • NCERT Exemplar Class
            • Решения RS Aggarwal, класс 12
            • Решения RS Aggarwal, класс 11
            • Решения RS Aggarwal, класс 10
            • 90 003 Решения RS Aggarwal класса 9
            • Решения RS Aggarwal класса 8
            • Решения RS Aggarwal класса 7
            • Решения RS Aggarwal класса 6
          • Решения RD Sharma
            • RD Sharma Class 6 Решения
            • Решения RD Sharma
            • Решения RD Sharma Class 8
            • Решения RD Sharma Class 9
            • Решения RD Sharma Class 10
            • Решения RD Sharma Class 11
            • Решения RD Sharma Class 12
          • PHYSICS
            • Механика
            • Оптика
            • Термодинамика Электромагнетизм
          • ХИМИЯ
            • Органическая химия
            • Неорганическая химия
            • Периодическая таблица
          • MATHS
            • Теорема Пифагора
            • 0004
            • 000300030004
            • Простые числа
            • Взаимосвязи и функции
            • Последовательности и серии
            • Таблицы умножения
            • Детерминанты и матрицы
            • Прибыль и убыток
            • Полиномиальные уравнения
            • Деление фракций
          • 000
          • 000
          • 000
          • 000
          • 000
          • 000 Microology
          • 000
          • 000 Microology
          • 000 BIOG3000
              FORMULAS
              • Математические формулы
              • Алгебраические формулы
              • Тригонометрические формулы
              • Геометрические формулы
            • КАЛЬКУЛЯТОРЫ
              • Математические калькуляторы
              • 0003000 PBS4000
              • 000300030002 Примеры калькуляторов химии
              • Класс 6
              • Образцы бумаги CBSE для класса 7
              • Образцы бумаги CBSE для класса 8
              • Образцы бумаги CBSE для класса 9
              • Образцы бумаги CBSE для класса 10
              • Образцы бумаги CBSE для класса 11
              • Образцы бумаги CBSE чел для класса 12
            • CBSE Контрольный документ за предыдущий год
              • CBSE Контрольный документ за предыдущий год Класс 10
              • Контрольный документ за предыдущий год CBSE, класс 12
            • HC Verma Solutions
              • HC Verma Solutions Class 11 Physics
              • Решения HC Verma, класс 12, физика
            • Решения Лакмира Сингха
              • Решения Лакмира Сингха, класс 9
              • Решения Лакмира Сингха, класс 10
              • Решения Лакмира Сингха, класс 8
            • Заметки CBSE
            • , класс
                CBSE Notes
                  Примечания CBSE класса 7
                • Примечания CBSE класса 8
                • Примечания CBSE класса 9
                • Примечания CBSE класса 10
                • Примечания CBSE класса 11
                • Примечания CBSE класса 12
              • Примечания к редакции CBSE
                • Примечания к редакции
                • CBSE
                • Примечания к редакции класса 10 CBSE
                • Примечания к редакции класса 11 CBSE 9000 4
                • Примечания к редакции класса 12 CBSE
              • Дополнительные вопросы CBSE
                • Дополнительные вопросы по математике класса 8 CBSE
                • Дополнительные вопросы по науке 8 класса CBSE
                • Дополнительные вопросы по математике класса 9 CBSE
                • Дополнительные вопросы по науке класса 9 CBSE
                • Дополнительные вопросы по математике для класса 10
                • Дополнительные вопросы по науке, класс 10 по CBSE
              • CBSE, класс
                • , класс 3
                • , класс 4
                • , класс 5
                • , класс 6
                • , класс 7
                • , класс 8
                • , класс 9 Класс 10
                • Класс 11
                • Класс 12
              • Учебные решения
            • Решения NCERT
              • Решения NCERT для класса 11
                • Решения NCERT для класса 11 по физике
                • Решения NCERT для класса 11 Химия
                • Решения для биологии класса 11
                • Решения NCERT для математики класса 11
                • 9 0003 NCERT Solutions Class 11 Accountancy
                • NCERT Solutions Class 11 Business Studies
                • NCERT Solutions Class 11 Economics
                • NCERT Solutions Class 11 Statistics
                • NCERT Solutions Class 11 Commerce
              • NCERT Solutions For Class 12
                • NCERT Solutions For Класс 12 по физике
                • Решения NCERT для химии класса 12
                • Решения NCERT для класса 12 по биологии
                • Решения NCERT для класса 12 по математике
                • Решения NCERT Класс 12 Бухгалтерия
                • Решения NCERT, класс 12, бизнес-исследования
                • Решения NCERT, класс 12 Экономика
                • NCERT Solutions Class 12 Accountancy Part 1
                • NCERT Solutions Class 12 Accountancy Part 2
                • NCERT Solutions Class 12 Micro-Economics
                • NCERT Solutions Class 12 Commerce
                • NCERT Solutions Class 12 Macro-Economics
              • NCERT Solutions For Класс 4
                • Решения NCERT для математики класса 4
                • Решения NCERT для класса 4 EVS
              • Решения NCERT для класса 5
                • Решения NCERT для математики класса 5
                • Решения NCERT для класса 5 EVS
              • Решения NCERT для класса 6
                • Решения NCERT для математики класса 6
                • Решения NCERT для науки класса 6
                • Решения NCERT для социальных наук класса 6
                • Решения NCERT для класса 6 Английский
              • Решения NCERT для класса 7
                • Решения NCERT для класса 7 Математика
                • Решения NCERT для класса 7 Наука
                • Решения NCERT для класса 7 по социальным наукам
                • Решения NCERT для класса 7 Английский
              • Решения NCERT для класса 8
                • Решения NCERT для класса 8 Математика
                • Решения NCERT для класса 8 Science
                • Решения NCERT для социальных наук 8 класса
                • Решение NCERT ns для класса 8 Английский
              • Решения NCERT для класса 9
                • Решения NCERT для социальных наук класса 9
              • Решения NCERT для математики класса 9
                • Решения NCERT для математики класса 9 Глава 1
                • Решения NCERT для Математика класса 9 Глава 2
                • Решения NCERT для математики класса 9 Глава 3
                • Решения NCERT для математики класса 9 Глава 4
                • Решения NCERT
                • для математики класса 9 Глава 5
                • Решения NCERT для математики класса 9 Глава 6
                • Решения NCERT для Математика класса 9 Глава 7
                • Решения NCERT для математики класса 9 Глава 8
                • Решения NCERT
                • для математики класса 9 Глава 9
                • Решения NCERT
                • для математики класса 9 Глава 10
                • Решения NCERT для математики класса 9 Глава 11
                • Решения NCERT для Математика класса 9 Глава 12
                • Решения NCERT для математики класса 9 Глава 13
                • Решения
                • NCERT для математики класса 9 Глава 14
                • Решения NCERT для математики класса 9 Глава 15
              • Решения NCERT для науки класса 9
                • Решения NCERT для науки класса 9 Глава 1
                • Решения NCERT для науки класса 9 Глава 2
                • Решения NCERT для класса 9 Наука Глава 3
                • Решения NCERT для Науки Класса 9 Глава 4
                • Решения NCERT для Науки Класса 9 Глава 5
                • Решения NCERT для Науки Класса 9 Глава 6
                • Решения NCERT для Науки Класса 9 Глава 7
                • Решения NCERT для Класса 9 Наука Глава 8
                • Решения NCERT для Науки Класса 9 Глава 9
                • Решения NCERT для Науки Класса 9 Глава 10
                • Решения NCERT для Науки Класса 9 Глава 12
                • Решения NCERT для Науки Класса 9 Глава 11
                • Решения NCERT для Класса 9 Наука Глава 13
                • Решения NCERT для класса 9 Наука Глава 14
                • Решения NCERT для класса 9 по науке Глава 15
              • Решения NCERT для класса 10
                • Решения NCERT для класса 10 по социальным наукам
              • Решения NCERT для математики класса 10
                • Решения NCERT для математики класса 10 Глава 1
                • Решения NCERT для математики класса 10 Глава 2
                • Решения NCERT для математики класса 10 Глава 3
                • Решения NCERT для математики класса 10 Глава 4
                • Решения NCERT для математики класса 10 Глава 5
                • Решения NCERT для математики класса 10 Глава 6
                • Решения NCERT для математики класса 10 Глава 7
                • Решения NCERT для математики класса 10 Глава 8
                • Решения NCERT для математики класса 10 Глава 9
                • Решения NCERT
                • для математики класса 10 Глава 10
                • Решения
                • NCERT для математики класса 10 Глава 11
                • Решения NCERT для математики класса 10 Глава 12
                • Решения NCERT для математики класса 10 Глава 13
                • NCERT Sol Решения NCERT для математики класса 10 Глава 14
                • Решения NCERT для математики класса 10 Глава 15
              • Решения NCERT для науки класса 10
                • Решения NCERT для науки класса 10 Глава 1
                • Решения NCERT для науки класса 10 Глава 2
                • Решения NCERT для науки класса 10, глава 3
                • Решения NCERT для науки класса 10, глава 4
                • Решения NCERT для науки класса 10, глава 5
                • Решения NCERT для науки класса 10, глава 6
                • Решения NCERT для науки класса 10, глава 7
                • Решения NCERT для науки 10 класса, глава 8
                • Решения NCERT для науки класса 10 Глава 9
                • Решения NCERT для науки класса 10 Глава 10
                • Решения NCERT для науки класса 10 Глава 11
                • Решения NCERT для науки класса 10 Глава 12
                • Решения NCERT для науки 10 класса Глава 13
                • Решения NCERT для науки 10 класса Глава 14
                • Решения NCERT для науки 10 класса Глава 15
                • Решения NCERT для науки 10 класса Глава 16
              • Учебный план NCERT
              • NCERT
            • Commerce
              • Class 11 Commerce Syllabus
                  ancy Account
                • Программа бизнес-исследований 11 класса
                • Учебная программа по экономике 11 класса
              • Учебная программа по коммерции 12 класса
                • Учебная программа по бухгалтерии 12 класса
                • Учебная программа по бизнесу 12 класса
                • Учебная программа по экономике
                • 9000 9000
                    • Образцы документов по коммерции класса 11
                    • Образцы документов по коммерции класса 12
                  • TS Grewal Solutions
                    • TS Grewal Solutions Class 12 Accountancy
                    • TS Grewal Solutions Class 11 Accountancy
                  • Отчет о движении денежных средств
                  • Что такое Entry eurship
                  • Защита прав потребителей
                  • Что такое основной актив
                  • Что такое баланс
                  • Формат баланса
                  • Что такое акции
                  • Разница между продажами и маркетингом
                • ICSE
                  • Документы
                  • ICSE
                  • Вопросы ICSE
                  • ML Aggarwal Solutions
                    • ML Aggarwal Solutions Class 10 Maths
                    • ML Aggarwal Solutions Class 9 Maths
                    • ML Aggarwal Solutions Class 8 Maths
                    • ML Aggarwal Solutions Class 7 Maths
                    • ML 6 Maths
                    • ML 6 Maths
                  • Selina Solutions
                    • Selina Solutions для класса 8
                    • Selina Solutions для Class 10
                    • Selina Solutions для Class 9
                  • Frank Solutions
                    • Frank Solutions для математики класса 10
                    • Frank Solutions для математики класса 9
                  • Класс ICSE 9000 2
                  • ICSE Class 6
                  • ICSE Class 7
                  • ICSE Class 8
                  • ICSE Class 9
                  • ICSE Class 10
                  • ISC Class 11
                  • ISC Class 12
              • IAS
                  Exam
                • IAS
                • Civil
                • Сервисный экзамен
                • Программа UPSC
                • Бесплатная подготовка к IAS
                • Текущие события
                • Список статей IAS
                • Пробный тест IAS 2019
                  • Пробный тест IAS 2019 1
                  • Пробный тест IAS 2019 2
                • Экзамен KPSC KAS
                • Экзамен UPPSC PCS
                • Экзамен MPSC
                • Экзамен RPSC RAS ​​
                • TNPSC Group 1
                • APPSC Group 1
                • Экзамен BPSC
                • WBPS3000 Экзамен 9000 MPC 9000 9000 MPC4000 Jam
              • Вопросник UPSC 2019
                • Ключ ответов UPSC 2019
              • Коучинг IAS
                • IA S Coaching Бангалор
                • IAS Coaching Дели
                • IAS Coaching Ченнаи
                • IAS Coaching Хайдарабад
                • IAS Coaching Mumbai
            • JEE
              • BYJU’SEE
              • 9000 JEE 9000 Основной документ JEE 9000 JEE 9000
              • Вопросник JEE
              • Биномиальная теорема
              • Статьи JEE
              • Квадратичное уравнение
            • NEET
              • Программа BYJU NEET
              • NEET 2020
              • NEET Приемлемость 9000 Критерии 9000 NEET4 9000 NEET 9000 Пример 9000 9000 NEET
              • Поддержка
                • Разрешение жалоб
                • Служба поддержки
                • Центр поддержки
            • Государственные советы
              • GSEB
                • GSEB Syllabus
                • GSEB4
                • GSEB3 Образец статьи
                • GSEB3 004
                • MSBSHSE
                  • MSBSHSE Syllabus
                  • MSBSHSE Учебники
                  • Образцы статей MSBSHSE
                  • Вопросники MSBSHSE
                • AP Board
                  • APSCERT
                  • Syll
                  • AP 9000SC4
                  • Syll
                  • AP
                  • Syll 9000SC4
                  • Syll
                  • Syll
                • MP Board
                  • MP Board Syllabus
                  • MP Board Образцы документов
                  • Учебники MP Board
                • Assam Board
                  • Assam Board Syllabus
                  • Assam Board Учебники 9000 9000 Board4 BSEB
                    • Bihar Board Syllabus
                    • Bihar Board Учебники
                    • Bihar Board Question Papers
                    • Bihar Board Model Papers
                  • BSE Odisha
                    • Odisha Board Syllabus
                    • Odisha Board Syllabus
                    • Odisha Board Syllabus
                    • Программа PSEB
                    • Учебники PSEB
                    • Вопросы PSEB
                  • RBSE
                    • Rajasthan Board Syllabus
                    • RBSE Учебники
                    • RBSE Question Papers
                  • HPBOSE
                  • HPBOSE
                  • HPBOSE
                  • JKBOSE
                    • Программа обучения JKBOSE
                    • Образцы документов JKBOSE
                    • Шаблон экзамена JKBOSE
                  • TN Board
                    • TN Board Syllabus
                    • TN Board 9000 Papers 9000 TN Board 9000 Papers 9000 9000 Paper Papers 9000 TN Board 9000 4 JAC
                      • Программа JAC
                      • Учебники JAC
                      • Вопросники JAC
                    • Telangana Board
                      • Telangana Board Syllabus
                      • Telangana Board Учебники
                      • Papers Telangana Board Учебники
                      • Учебный план KSEEB
                      • Типовой вопросник KSEEB
                    • KBPE
                      • Учебный план KBPE
                      • Учебники KBPE
                      • Документы по KBPE
                    • 9000 Доска UPMSP 9000 Доска UPMSP 9000 Доска UPMSP 9000
                  • Совет по Западной Бенгалии
                    • Учебный план Совета по Западной Бенгалии
                    • Учебники для Совета по Западной Бенгалии
                    • Вопросы для Совета по Западной Бенгалии
                  • UBSE
                  • TBSE
                  • Гоа Совет
                  • 000
                  • NBSE0003 Board
                  • Manipur Board
                  • Haryana Board
                • Государственные экзамены
                  • Банковские экзамены
                    • Экзамены SBI
                    • Экзамены IBPS
                    • Экзамены RBI
                    • IBPS

                      03
                    • Экзамены SSC
                    • 9SC2

                    • SSC GD
                    • SSC CPO 900 04
                    • SSC CHSL
                    • SSC CGL
                  • Экзамены RRB
                    • RRB JE
                    • RRB NTPC
                    • RRB ALP
                  • O Экзамены на страхование
                  • LIC4
                  • LIC4
                  • UPSC CAPF
                  • Список статей государственных экзаменов
                • Обучение детей
                  • Класс 1
                  • Класс 2
                  • Класс 3
                • Академические вопросы
                  • Вопросы по физике
                  • Вопросы по химии
                  • Вопросы по химии
                  • Вопросы
                  • Вопросы по науке
                  • Вопросы GK
                • Онлайн-обучение
                  • Домашнее обучение
                • Полные формы
                • CAT
            ,Определение

            в кембриджском словаре английского языка

            ГЕНЕТИКА | Определение в кембриджском словаре английского языка Тезаурус: синонимы и родственные слова ,

            ген APP — Genetics Home Reference

          • Bornebroek M, De Jonghe C, Haan J, Kumar-Singh S, Younkin S, Roos R, Van Broeckhoven C. Наследственное кровоизлияние в мозг с амилоидозом голландского типа (AbetaPP 693): снижение амилоида в плазме -бета 42 концентрация. Neurobiol Dis. 2003 декабрь; 14 (3): 619-23.

          • Caillé I, Allinquant B, Dupont E, Bouillot C, Langer A, Müller U, Prochiantz A. Растворимая форма белка-предшественника амилоида регулирует пролиферацию предшественников в субвентрикулярной зоне взрослых.Развитие. 2004 Май; 131 (9): 2173-81. Epub 2004 8 апреля.

          • Конти Л., Каттанео Э. Контроль деления нервных стволовых клеток в субвентрикулярной зоне взрослого: работа APPealing. Trends Neurosci. 2005 Февраль; 28 (2): 57-9. Обзор.

          • Корди Дж. М., Хупер Н. М., Тернер А. Дж.. Участие липидных рафтов в болезни Альцгеймера. Mol Membr Biol. 2006 январь-февраль; 23 (1): 111-22. Обзор.

          • Эдвардс-Ли Т., Рингман Дж. М., Чанг Дж., Вернер Дж., Морган А., Сент-Джордж Хислоп П., Томпсон П., Даттон Р., Мликотик А., Рогаева Е., Харди Дж.Афро-американская семья с ранним началом болезни Альцгеймера и мутацией APP (T714I). Neurology. 2005 25 января; 64 (2): 377-9.

          • Фернандес-Мадрид I, Леви Э., Мардер К., Франгионе Б. Вариант кодона 618 гена амилоида Альцгеймера, ассоциированного с наследственным кровоизлиянием в мозг. Энн Нейрол. 1991 ноя; 30 (5): 730-3.

          • Харди Дж., Селкое Дж. Амилоидная гипотеза болезни Альцгеймера: прогресс и проблемы на пути к терапии. Наука. 19 июля 2002; 297 (5580): 353-6.Обзор. Ошибка в: Science 2002, 27 сентября; 297 (5590): 2209.

          • Харман Д. Патогенез болезни Альцгеймера: роль старения. Ann N Y Acad Sci. 2006 Май; 1067: 454-60. Обзор.

          • Kerr ML, Small DH. Цитоплазматический домен предшественника бета-амилоидного белка болезни Альцгеймера: функция, регуляция протеолиза и значение для разработки лекарств. J Neurosci Res. 2005 г. 15 апреля; 80 (2): 151-9. Обзор.

          • Levy E, Prelli F, Frangione B.Исследования первого описанного мутанта бета-амилоида болезни Альцгеймера, голландского варианта. J. Alzheimers Dis. 2006; 9 (3 доп.): 329-39. Обзор.

          • Маат-Шиман М., Роос Р., ван Дуинен С. Наследственное кровоизлияние в мозг по голландскому типу амилоидоза. Невропатологии. 2005 декабрь; 25 (4): 288-97. Обзор.

          • Майерсик Дж. Дж., Скалабрин Э. Дж. Моногенные инсульты. Semin Neurol. 2006 Февраль; 26 (1): 33-48. Обзор.

          • Obici L, Demarchi A, de Rosa G, Bellotti V, Marciano S, Donadei S, Arbustini E, Palladini G, Diegoli M, Genovese E, Ferrari G, Coverlizza S, Merlini G.Новая мутация AbetaPP, связанная исключительно с церебральной амилоидной ангиопатией. Энн Нейрол. 2005 Октябрь; 58 (4): 639-44.

          • Папассотиропулос А., Фунтулакис М., Данкли Т., Стефан Д.А., Рейман Э.М. Генетика, транскриптомика и протеомика болезни Альцгеймера. J Clin Psychiatry. 2006 Апрель; 67 (4): 652-70. Обзор.

          • Рокки А., Пеллегрини С., Сицилиано Г., Мурри Л. Гены причинности и предрасположенности к болезни Альцгеймера: обзор. Brain Res Bull. 30 июня 2003 г .; 61 (1): 1-24.Обзор.

          • Саламе М.А., Робинсон Дж.Л., Наванитам Д., Синха Д., Мэдден Б.Дж., Уолш П.Н., Радиски Е.С. Домен ингибитора Кунитца белка-предшественника амилоида / протеазы нексина 2 является высокоспецифичным субстратом мезотрипсина. J Biol Chem. 2010 15 января; 285 (3): 1939-49. DOI: 10.1074 / jbc.M109.057216. Epub 2009 17 ноября.

          • Wolfe MS, Guénette SY. Краткий обзор приложения. J Cell Sci. 2007 15 сентября; 120 (Pt 18): 3157-61. Обзор.

          • Чжан Х., Ма Ц., Чжан Ю.В., Сюй Х.Протеолитический процессинг белка-предшественника β-амилоида болезни Альцгеймера. J Neurochem. 2012 Янв; 120 Прил. 1: 9-21. DOI: 10.1111 / j.1471-4159.2011.07519.x. Epub 2011 28 ноября. Обзор.

          • .Ген

            SRY — Genetics Home Reference

          • Assumpção JG, Benedetti CE, Maciel-Guerra AT, Guerra G Jr, Baptista MT, Scolfaro MR, de Mello MP. Новые мутации, влияющие на активность связывания ДНК SRY: HMG-бокс N65H, ассоциированный с 46, XY чистый гонадный дисгенез и семейный не-HMG-бокс R30I, связанный с вариабельными фенотипами. J Mol Med (Берл). 2002 декабрь; 80 (12): 782-90. Epub 1 октября 2002 г.

          • Gimelli G, Gimelli S, Dimasi N, Bocciardi R, Di Battista E, Pramparo T, Zuffardi O.Идентификация и молекулярное моделирование новой семейной мутации в гене SRY, вовлеченной в чистую дисгенезию гонад. Eur J Hum Genet. 2007 Янв; 15 (1): 76-80. Epub 2006 25 октября.

          • Kellermayer R, Halvax L, Czakó M, Shahid M, Dhillon VS, Husain SA, Süle N, Gömöri E, Mammel M, Kosztolányi G. Новая мутация сдвига кадра в HMG-боксе Ген SRY у пациента с полной дисгенезией гонад 46, XY. Diagn Mol Pathol. 2005 сентябрь; 14 (3): 159-63.

          • King TF, Conway GS.Синдром Свайера. Curr Opin Endocrinol Diabetes Obes. 2014 декабрь; 21 (6): 504-10. DOI: 10.1097 / MED.0000000000000113. Обзор.

          • Филипс Н.Б., Янчо-Радек А., Итта В., Сингх Р., Чан Г., Хаас Е., Вайс М.А. SRY и определение пола человека: основной хвост коробки HMG функционирует как кинетический зажим, усиливая изгиб ДНК. J Mol Biol. 2006 21 апреля; 358 (1): 172-92. Epub 2006 6 февраля.

          • Queralt R, Madrigal I, Vallecillos MA, Morales C, Ballescá JL, Oliva R, Soler A, Sánchez A, Margarit E.Атипичный самец XX с геном SRY, расположенным на длинном плече хромосомы 1, и микроделецией 1qter. Am J Med Genet A. 2008 15 мая; 146A (10): 1335-40. DOI: 10.1002 / ajmg.a.32284.

          • Racca JD, Chen YS, Maloy JD, Wickramasinghe N, Phillips NB, Weiss MA. Взаимосвязь между структурой и функцией в человеческом факторе SRY, определяющем семенники: ароматическая опора лежит в основе специфической изгибающей ДНК поверхности бокса группы высокой мобильности (HMG). J Biol Chem. 2014 21 ноября; 289 (47): 32410-29. DOI: 10.1074 / JBC.M114.597526. Epub 2014 24 сентября.

          • Ризви А.А. 46, XX человек с транслокацией гена SRY: цитогенетические характеристики, клинические особенности и лечение. Am J Med Sci. 2008 апр; 335 (4): 307-9. DOI: 10.1097 / MAJ.0b013e31811ec1b4.

          • OMIM: СЕКС-ОПРЕДЕЛЯЮЩИЙ РЕГИОН Y
          • Шахид М., Диллион В.С., Джайн Н., Хедау С., Дивакар С., Сачдева П., Батра С., Дас BC, Хусейн С.А. Две новые новые точечные мутации локализованы выше и ниже области бокса HMG гена SRY у трех индийских 46, XY самок с изменением пола и образованием опухоли гонад.Мол Хум Репрод. 2004 июл; 10 (7): 521-6. Epub 2004 21 мая.

          • Waters PD, Wallis MC, Marshall Graves JA. Пол млекопитающих — Происхождение и эволюция Y-хромосомы и SRY. Semin Cell Dev Biol. 2007 июн; 18 (3): 389-400. Epub 2007 24 февраля. Обзор.

          • .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *