Теория промежуточных соединений: Автокатализ Теория промежуточных соединений для объяснения действия катализаторов.

Теория промежуточных соединений — Справочник химика 21

    Одним из первых объяснений явления катализа была теория промежуточных соединени . Положительной чертой этой теории являлось то, что она подчеркивала химическую сторону катализа и объясняла избирательность катализа образованием промежуточных соединений различной природы в зависимости от химического сродства данных веществ. Однако зависимость активности катализаторов от способа их приготовления, а также явления отравления и промотирования катализаторов заставили предположить, что каталитическую активность нельзя объяснить только химическим составом катализатора. [c.12]
    Теория промежуточных соединений была одним из первых научных объяснений явления катализа и до сих пор служит основой современных представлений о нем [11]. Схематично эта теория заключается в том, что медленная реакция между исходными реагирующими веществами заменяется двумя или цепью более быстрых реакций с участием катализатора, образующего с исходными веществами промежуточные соединения. В гомогенном катализе промежуточные соединения, как правило, можно обнаружить химическим анализом и даже выделить в чистом виде. При гетерогенном катализе на твердых катализаторах промежуточные соединения являются продуктом активированной (химической) адсорбции, они возникают лишь на поверхности катализатора, не образуют отдельных фаз и не обнаруживаются химическим анализом. 
[c.61]

    Механизм окислительно-восстановительных реакций. В настоящее время многие исследователи весьма скептически относятся к идеям о связи каталитической активности с коллективными свойствами электронов твердого тела (см., например, [23]) и вновь склоняются к чисто химическим концепциям, близким к теории промежуточных соединений. Однако в рамках этих концепций, как ука- швалось в самом начале этой книги, нельзя объяснить многие факты и наиболее фундаментальный из них — явление промотирования и модифицирования без образования новой фазы. Поэтому более вероятным является широкая вариация механизмов катализа от реакций, связанных, главным образом, с коллективными свойствами электронов в твердом теле, до превращений, практически идентичных с объемными гомогенными реакциями. Рассмотрим общий подход к явлениям катализа на полупроводниках на примере наиболее типичных для них окислительно-восстановительных превращений. Для большей конкретности будет рассмотрен случай окисления органических соединений. 

[c.26]

    Теория промежуточных соединений  [c.87]

    Подобные же промежуточные соединения образуют ТЬО.г и другие дегидратирующие окислы, причем П. Сабатье считал, что такие промежуточные соединения доказаны экспериментально. Теория промежуточных соединений имела много сторонников. [c.89]

    Теория промежуточных соединений сыграла большую роль в истории развития катализа для объяснения путей протекания многих реакций, но она страдает узостью и ограниченностью. Она бессильна объяснить такие важные явления катализа, как влияние поверхностной структуры, дисперсности, активации и отравления, вообще совершенно игнорирует физическую сущность, без чего, конечно, причины катализа и проблемы генезиса катализаторов не могут быть выяснены. Все перечисленное, а также развитие физических теорий логически способствовало ослаблению интереса к теории промежуточных соединений. Как будет показано ниже, последняя, правильная по существу, после внесения в нее необходимых новых физических представлений о катализе, слилась с физическими теориями. 

[c.89]


    Из многочисленных теоретических представлений о катализе [1—10] кратко рассмотрим здесь теории промежуточный соединений, активных центров, мультиплетную и электронную.. 
[c.61]

    Теория промежуточных соединений не объясняет зависимость активности катализаторов от способа их приготовления, типа носителя и других факторов, определяющих структуру катализаторов. [c.63]

    Для объяснения причин катализа было предложено значительное число теорий, которые несколько условно можно разбить на следующие 1) химические теории (теория промежуточных соединений), [c.86]

    Как объясняет теория промежуточных соединений механизм гомогенного катализа  [c.57]

    Теория промежуточных соединений получила широкое признание в начале XX в. Активным сторонником и пропагандистом ее был П. Сабатье, считавший, что физические теории катализа вообще несостоятельны, так как …они не могут объяснить ни специфичности катализаторов, ни замечательного разнообразия их действия . Он придавал совершенно особое значение промежуточному образованию нестойких соединений, которые и определяют направление и скорость реакций. В пользу этого он приводит большое число каталитических реакций, при которых можно выделить промежуточ- 

[c.88]

    Теоретическая сторона вопроса избирательности катализаторов также еще не ясна. Раньше исследователи находили в этом свойстве аргументацию в пользу теории промежуточных соединений. П. Сабатье считал, что химическая природа катализатора оказывает значительное влияние, которое трудно объяснить иначе, чем исходя из предположения о промежуточных соединениях. Другие авторы полагали, что избирательность является своеобразным подавлением возможных направлений реакций, кроме одного, что основано на избирательной адсорбции реагентов поверхностью катализаторов. Эта идея весьма вероятна. При наличии пучка потенциальных реакций в первую очередь протекает та, которая требует наименьшей энергии активации, т. е. которая связана с наиболее легкой хемо- 

[c.29]

    Однако потребовалось еще много времени для оформления и признания теории промежуточных соединений. Под влиянием идеалистических представлений И. Берцелиуса на катализ долго смотрели, как на нечто совершенно непонятное и не могущее быть понятым. Многие не могли связать представление о катализе с представлением 

[c.87]

    Активированная адсорбция является ключом к пониманию механизма гетерогенного катализа. Она показывает, что между химическими теориями промежуточных соединений и физическими адсорбционными теориями нет принципиальной разницы. На [c.120]

    Увеличение скорости реакции под влиянием катализатора энергетически можно объяснить тем, что катализатор снижает энергию активации реакции, увеличивая тем самым долю активных молекул. Гомогенный катализ достаточно хорощо объясняется теорией промежуточных соединений, согласно которой катализатор, реагируя с исходным веществом, образует неустойчивое промежуточное соединение. Возьмем медленную реакцию  

[c.35]

    Физические теории катализа вводят нас несравненно глубже в удивительную область каталитических—особенно гетерогенных— реакций и позволяют вскрывать такие закономерности, которые ускользали от сторонников теории промежуточных соединений. [c.89]

    Теории промежуточных соединений [c.424]

    Механизмы реакций, предложенные в теориях промежуточных соединений, не могут полностью объяснить процессов гидрирования, так как они не учитывают такого важного фактора сорбционных явлений, как состояние поверхности, ее топография и геометрия последнее, как известно, весьма существенно для гетерогенного катализа. 

[c.426]

    Теория промежуточных соединений. Объясняет большинство гомогенных каталитических процессов и является одним из первых теоретических объяснений механизма катализа. Она была изложена в трудах Оствальда в 1894—1911 гг. Исходное положение этой теории — предположение, что в течение реакции образуются неустойчивые промежуточные соединения катализатора с реагирующими веществами, которые затем распадаются с образованием продуктов реакции, а катализатор регенерируется. [c.171]

    Решение. По теории промежуточных соединений, объяс- [c.57]

    Гомогенный кат из. Для объяснения механизма гомогенного катализа наибольшее распространение получила теория промежуточных соединений, предложенная французским химиком Сабатье и развитая в работах Н. Д. Зелинского и его школы. Согласно этой теории катализатор реагирует с исходными веществами, образуя нестойкие промежуточные соединения, последующие превращения которых приводят к образованию нужных продуктов реакции и регенерации катализатора. 

[c.143]

    Гомогенный катализ. В гомогенном катализе наибольшее распространение получила теория промежуточных соединений, предложенная французским ученым П. Сабатье и развитая в работах [c.30]

    Теория гетерогенного катализа развивается в основном по двум направлениям. В основе одного лежит теория промежуточных соединений (с ней мы уже познакомились) другое связывает катализ с разрыхлением связей в молекулах (приводящим к дальнейшему их перераспределению) вследствие адсорбции веществ на активных центрах (мультиплетная теория А. А. Баландина а теория ансамблей Н. И. Кобозева). Этими центрами считаются участки, где есть искажения геометрического или стехиометрического порядка. Адсорбция атомов 

[c.157]

    Основные положения теории промежуточных соединений в гомогенном катализе 1) катализатор образует с реагирующим веществом реакционноспособное неустойчивое промежуточное соединение 2) образование промежуточного соединения является относительно быстро протекающим обратимым процессом 4) неустойчивое промежуточное соединение относительно медленно распадается на продукты реакции и молекулу катализатора 5) общая скорость процесса пропорциональна концентрации промежуточного продукта. В соответствии с этими положениями скорость процесса определяется скоростью распада промежуточного соединения и прямо пропорциональна концентрации катализатора, а порядок реакции получается дробным (между нулевым и л-ным) в зависимости от использованного катализатора и температурного режима. Наиболее часто встречающиеся виды гомогенного катализа. 

[c.344]


    Механизм действия катализаторов различен. Для объяснения механизма гомогенного катализатора используют теорию промежуточных соединений, согласно которой реакция [c.26]

    Явление гомогенного катализа объясняется теорией промежуточных соединений. [c.61]

    Иллюстрирующим теорию промежуточных соединений примером может служить нитрозный метод производства серной кислоты, для которого имеем [c.345]

    Явление гомогенного катализа находит свое объяснение в теории промежуточных. соединений. [c.139]

    Известны случаи, когда между адсорбированными молекулами п частицами адсорбента образуются неустойчивые химические соединения, легко вступающие в дальнейшие реакции. В этом случае адсорбционная теория катали а сближается с теорией промежуточных соединений. [c.141]

    Явление гомогенного катализа объясняется теорией промежуточных соединений, согласно которой в присутствии катализатора реакция протекает с его участием и в несколько стадий. Схематично это может быть выражено так  [c.87]

    Химизм гомогенного катализа рассматривают обычно, исходя из теории промежуточных соединений. Согласно этой теории, медленно протекающие реакции [c.345]

    Промежуточные соединения. Как указывалось выше, ряд затруднений при объяснении явлений гетерогенного катализа с точки зрения коллективных свойств электронов твердого тела, а также успехи в идентификации поверхностных адсорбированных соединений привели к возрождению чисто химических концепций в теории катализа, в обш,ем аналогичных первоначальной теории промежуточных соединений. Особое значение приобретают при этом индивидуальные свойства атомов и ионов в твердом теле, т. е. свойства, опредоляемые положением элемента в периодической системе элементов. Соответственно, как и в обш,ей теории химических реакций в.елика роль энергетических параметров самого превраш,ения.  [c.30]

    По теории промежуточных соединений каталитическая активность оксидов железа и ванадия объясняется тем, что на их поверхности могут образовываться и распадаться нестойкие промежуточные соединения. Благодаря этому для реакции диоксида серы с кислородом, которая не может протекать непосредственно в газе, становится возможным обходной путь, что ведет к снижению энергетического барьера и резкому ускорению окисления 502 в 50з на поверхности катализатора. [c.117]

    Теория промежуточных соединений. Теория промежуточных соединений основана на том положении, что катализатор в процессе катализируемой им реакции активно участвует в образовании нестойкого промежуточного соединения с реагентами. В результате возникновения таких соединений снижается энергия активации химического процесса. [c.103]

    Несоответствие чисто химической теории промежуточных соединений всей совокупности экспериментального материала привело к представлению о том, что катализ осуществляется не на всей поверхности, а только на так называемых активных центрах. Наиболее чегко эти представления были изложены еще Тэйлором. [c.12]

    В соответствии с теорией промежуточных соединений в современном представлении сущность ускоряющего действия катализаторов состоит в понижении энергии активации химической реакции в результате образовакия промежуточных соединений с участием катализатора или вследствие осуществления реакции по цепному механизму при инициирующем действии катализатора. [c.61]

    Успехи катализа неразрывно связаны с развитием теории каталитических процессов, хотя и сейчас еще практические его достижения значительно опережают наши теоретические познания и представления. Первые представления о сущности каталитических явлений относятся к началу XIX в. Уже в 1833 г. Е. Митчерлих пытался объяснить схему реакции получения эфира из спирта в присутствии серной кислоты тем, что под влиянием последней спирт разлагается в эфир так же, как сахар при брожении под действием ферментов или как перекись водорода под действием металлов . Все аналогичные каталитические явления он объединил под названием контактных реакций, при которых вещества химически изменяются лишь в присутствии контактов (катализаторов), остающихся (по Е. Митчерлиху) неизл4ененными. Примерно в это же время была обоснована теория промежуточных соединений, т. е. учение о том, что катализатор принима ет активное участие в катализируемом им процессе, образуя с реагентами нестойкие промежуточные соединения, которые получаются и распадаются, облегчая протекание каталитических реакций. Это особенно ясно было сформулировано Л. Плэйфейром в 1848 i . и окончательно развито П. Сабатье и другими в XX в. [c.16]

    Механизм воздействия катализатора на химическую реакцию находит объяснение в теории промежуточных соединений. Катализатор с одним из реагирующих веществ образует непрочное промежуточное соединение, которое легко реагирует со вторым компо-пеитсм реакции. Это положение подтверждается тем, что в ряде случаев удалось выделить соединения катализатора с одним из компонентов реакции. [c.160]

    Еще М. Фарадей высказал предположение, что каталитическое ускорение реакции достигается благодаря адсорбционному сгущению — повышению концентрации реагирующих веществ в зоне реакции — адсорбционном слое и увеличению благодаря этому числа столкновений. Однако такая трактовка недостаточ1 а, так как она может объяснить ускорение реакции не более чем в 10 10 раз, в то время как, например, реакция На Ь О.. ускоряется даже на фарфоре — сравнительно инертном катализаторе — в 10 -ь 10 раз. Поляни предложил схему адсорбционного механизма каталитического ускорения в результате понижения энергетических барьеров, снижения энергии активации в адсорбционном состоянии, объяснявшую ускорение реакции в 10 10 раз. Длительность взаимного контакта адсорбированных молекул реагирующих веществ, ориентирующее участие катализатора в активном комплексе, разрыхление межатомных связей в адсорбированных молекулах приводят к значительному повышению вероятности переходного состояния и понижению энергии активации реакции, что и псроя дает столь значительное ускорение реакции. Дополняемая современными представлениями об электронных механизмах катализа схема Поляни не утрачивает своего значения и в настоящее время. Сохраняет определенное значение также и упоминавшаяся теория промежуточных соединений, отчетливо сформулированная в конце XIX — начале XX в. П. Са- [c.294]

    Несмотря на рациональные идеи, содержащиеся в теории Либиха и в работах, ее развивавших, она не получила в свое время должного оформления и распространения. Причин для этого много, но главная из них связана с трудностям1и прямых или косвенных доказательств непрерывного изменения энергии химических связей в духе идей Бертолле. В то же время химические теории промежуточных соединений было возможно выразить наглядными схемами, оказавшимися весьма плодотворными в классическом органическом синтезе. Так, представления об образовании и распаде промежуточных соединений сыграли выдающуюся роль в изучении реакций полимеризации (Бутлеров, Бертло), гидратации и дегидратации (Бутлеров, Перкин, Клейзен, Кневенагель и др.), изомеризации (Фаворский). Именно поэтому теория промежуточных соединений оставалась еще руководящей идеей в основополагающих каталитических синтезах Г. Г. Густавсона, Ш. Фриделя и Д. Крафтса, П. Сабатье и В. И. Ипатьева Теория Либиха, естественно, тогда [c.126]

    Но уход со сцены теории Либиха был времеиным. С дальнейшим развитием каталитического синтеза стехиометрические рамки для катализа оказались слишком тесными. Хотя в синтезах посредством галогенидов алюминия и удавалось выделять промежуточные соединения, содержащие алюминий, и тем самым доказывать основное положение теории промежуточных соединений, стехиометрические соотношения прт этом соблюдать не удавалось. В экспериментах Густавсона состав получаемых соединений каждый раз оказывался новым. Фридель, и Крафте также получали соединения моталлоорганической природы разного состава. [c.127]


Теория — промежуточное соединение — Большая Энциклопедия Нефти и Газа, статья, страница 1

Теория — промежуточное соединение

Cтраница 1

Теория промежуточных соединений объясняет главным образом механизм гомогенного катализа. В гетерогенном катализе ускорение реакции в большинстве случаев связано со снижением энергии активации реакции в присутствии катализатора. Это обусловли-вается промежуточным взаимодействием реагирующих веществ с катализатором. Однако промежуточное соединение, возникающее при гетерогенном катализе, не образует самостоятельную фазу, а представляет собой поверхностное соединение.  [1]

Теория промежуточных соединений хорошо объясняет каталитическое окисление SO2 в SO3 окислами азота при башенном процессе.  [2]

Теория промежуточных соединений хорошо объясняет каталитическое окисление SO2 в 5Оз окислами азота при башенном процессе.  [3]

Теория промежуточных соединений объясняет повышение реакционной способности молекул образованием двухмерных промежуточных соединений между адсорбированной молекулой и катализатором. Собственно, хемосорбция и является путем образования таких соединений. Промежуточные соединения обладают большей реакционной способностью, чем молекулы реагентов, и это облегчает течение реакции.  [4]

Теория промежуточных соединений является наиболее ранней теорией. Еще более 100 лет назад Клеман и Дезорм [33] именно таким образом объяснили каталитическое действие окислов азота в камэрном процессе.  [5]

Теория промежуточных соединений основана на том положении, что катализатор в процессе катализируемой им реакции активно участвуете образовании нестойкого промежуточного соединения с реагентами. В результате возникновения таких соединений снижается энергия активации химического процесса.  [6]

Теория промежуточных соединений основана на том, что катализатор в процессе реакции активно участвует в образовании нестойкого промежуточного соединения с реагентами. В результате возникновения таких соединений снижается энергия активации химического процесса.  [7]

Теория промежуточных соединений не объясняет зависимость активности катализаторов от способа их приготовления, типа носителя и других факторов, определяющих структуру катализаторов.  [8]

Теория промежуточных соединений сыграла большую роль в истории развития катализа для объяснения путей протекания многих реакций, но она страдает узостью и ограниченностью. Она бессильна объяснить такие важные явления катализа, как влияние поверхностной структуры, дисперсности, активации и отравления, вообще совершенно игнорирует физическую сущность, без чего, конечно, причины катализа и проблемы генезиса катализаторов не могут быть выяснены. Все перечисленное, а также развитие физических теорий логически способствовало ослаблению интереса к теории промежуточных соединений. Как будет показано ниже, последняя, правильная по существу, после внесения в нее необходимых новых физических представлений о катализе, слилась с физическими теориями.  [9]

Теория промежуточных соединений во всяком случае об яс-няет большое число каталитических явлений.  [10]

Теория промежуточных соединений сыграла большую роль в истории развития катализа для объяснения путей протекания многих реакций, но она страдает узостью и ограниченностью. Она бессильна объяснить такие важные явления катализа, как влияние поверхностной структуры, дисперсности, активации и отравления, вообще совершенно игнорирует физическую сущность, без чего, конечно, причины катализа и проблемы генезиса катализаторов не могут быть выяснены. Все перечисленное, а также развитие физических теорий логически способствовало ослаблению интереса к теории промежуточных соединений. Как будет показано ниже, последняя, правильная по существу, после внесения в нее необходимых новых физических представлений о катализе, слилась с физическими теориями.  [11]

Теория объемных промежуточных соединений имеет весьма существенные, принципиальные недостатки. Представление об образовании в ходе катализа промежуточных соединений в виде отдельной новой фазы необоснованно теоретически [18] и резко противоречит опытным фактам.  [12]

В теории промежуточных соединений также происходят сдвиги, сближающие ее с адсорбционной теорией катализа. Если раньше считали, что промежуточные соединения, образующиеся в ходе катализа, не отличаются от обычных кристаллических химических соединений со всеми присущими им свойствами, то в настоящее время принято, что эти соединения, существуя лишь на поверхности катализатора, не образуют самостоятельных фаз. Кристаллическая структура катализатора при этом остается неизменной.  [13]

Эта теория промежуточных соединений объясняет влияние катализатора на скорость химической реакции. Как видите, она объясняет и тот факт, что количество катализатора в ходе реакции не изменяется, остается постоянным.  [14]

Согласно теории промежуточных соединений, скорость реакции увеличивается за счет образования неустойчивых промежуточных соединений катализатора с одним из реагирующих веществ. Полученное неустойчивое соединение в дальнейшем вступает во взаимодействие с другим реагирующим веществом. При этом взаимодействии образуется соединение двух реагирующих веществ, а катализатор выделяется в свободном состоянии.  [15]

Страницы:      1    2    3    4

Механизм гомогенного катализа представляет теория промежуточных соединений. Выберите правильный ответ для реакции

ТЕСТОВЫЕ ЗАДАНИЯ

По теме «Химическое равновесие»

 

Вариант №1

 

1. ПРИ ПОВЫШЕНИИ ДАВЛЕНИЯ И ПОСТОЯННОЙ ТЕМПЕРАТУРЕ РАВНОВЕСИЕ РЕАКЦИИ N2 + 3H2 ⇄ 2NH3

1) не смещается

2) смещается влево

3) смещается вправо

 

2. ПРИ УВЕЛИЧЕНИИ ДАВЛЕНИЯ В 2 РАЗА ПРИ Т=CONST СКОРОСТЬ РЕАКЦИИ 2SO2 + O2 ⇄ 2SO3 УВЕЛИЧИВАЕТСЯ

1) в 2 раза 3) в 8 раз

2) в 4 раза 4) в 16 раз

 

3. ДЛЯ СМЕЩЕНИЯ РАВНОВЕСИЯ РЕАКЦИИ 2СOг + О2 ⇄ 2СО2 + 566,9 кДж ВПРАВО НЕОБХОДИМО

1) увеличить Т, увеличить Р, увеличить [СО2]

2) уменьшить Т, уменьшить Р, уменьшить [СО2]

3) увеличить Т, уменьшить Р, уменьшить [СО2]

4) уменьшить Т, увеличить Р, уменьшить [СО2]

 

4. КОНСТАНТА РАВНОВЕСИЯ РЕАКЦИИ PCl5(Г) ⇄ PCl3(Г) + Cl2 – Q ПРИ УВЕЛИЧЕНИИ Т И Р=CONST

1) уменьшится

2) увеличится

3) не изменится

 

5. КС РЕАКЦИИ CO + Cl2 ⇄ COCl2 ПРИ 600оС РАВНА 6,386. ПРИ КОНЦЕНТРАЦИЯХ РЕАГИРУЮЩИХ ВЕЩЕСТВ [CO]=1 моль/л, [Cl2]= 1моль/л, [COCl2]=8моль/л

1) реакция протекает слева направо

2) реакция протекает справа налево

3) наступает химическое равновесие

ТЕСТОВЫЕ ЗАДАНИЯ

По теме «Химическое равновесие»

 

Вариант №2

 

1. КС РЕАКЦИИ CO + Cl2 ⇄ COCl2 ПРИ 600оС РАВНА 6,386. ПРИ КОНЦЕНТРАЦИЯХ РЕАГИРУЮЩИХ ВЕЩЕСТВ [CO]=1 моль/л, [Cl2]= 1,565 моль/л, [COCl2]=10 моль/л

1) реакция протекает слева направо

2) реакция протекает справа налево

3) наступает химическое равновесие

 

2. ДЛЯ СМЕЩЕНИЯ РАВНОВЕСИЯ РЕАКЦИИ CO + H2O → CO2 + H2 – Q ВПРАВО НЕОБХОДИМО

1) повысить P, повысить T, повысить [CO2]

2) повысить P, понизить T, повысить [CO2]

3) повысить P, понизить T, понизить [CO2]

4) не изменять P, повысить T, понизить [CO2]

 

3. ПРИ УВЕЛИЧЕНИИ ДАВЛЕНИЯ РЕАКЦИИ 4HCl + O2 ⇄ 2H2O + 2Cl2 КОНСТАНТА РАВНОВЕСИЯ



1) увеличится

2) уменьшится

3) не изменится

 

4. ПРИ ПОВЫШЕНИИ ТЕМПЕРАТУРЫ РЕАКЦИИ CO2 + C ⇄ 2CO — 160,5 кДж РАВНОВЕСИЕ

1) смесится вправо

2) сместится влево

3) не изменится

 

5. ПРИ УМЕНЬШЕНИИ ДАВЛЕНИЯ В 2 РАЗА ПРИ Т=CONST СКОРОСТЬ ПРЯМОЙ РЕАКЦИИ N2 + 3H2 ⇄ 2NH3 УМЕНЬШИТСЯ

1) в 2 раза

2) в 4 раза

3) в 8 раз

4) в 16 раз

ТЕСТОВЫЕ ЗАДАНИЯ

По теме «Химическое равновесие»

 

Вариант №3

 

1. СКОРОСТЬ РЕАКЦИИ PCl5(г) ⇄ PCl3(г) + Cl2 ПРИ УВЕЛИЧЕНИИ ДАВЛЕНИЯ В 2 РАЗА УВЕЛИЧИТСЯ

1) прямой в 2 раза

2) прямой в 4 раза

3) обратной в 2 раза

4) обратной в 4 раза

 

2. КС РЕАКЦИИ H2 + I2 ⇄ 2HI ПРИ 444оС РАВНА 50. ПРИ КОНЦЕНТРАЦИЯХ РЕАГИРУЮЩИХ ВЕЩЕСТВ [Н2]=2 моль/л, [I2]= 5 моль/л, [HI]=10 моль/л

1) реакция протекает слева направо

2) реакция протекает справа налево

3) наступает химическое равновесие

 

3. ДЛЯ СМЕЩЕНИЯ РАВНОВЕСИЯ РЕАКЦИИ H2 + I2 ⇄ 2HI + Q ВПРАВО НЕОБХОДИМО

1) повысить P, повысить T, повысить [HI]

2) не изменять P, понизить T, понизить [HI]

3) повысить P, понизить T, повысить [HI]

4) понизить P, повысить T, понизить [HI]

 

4. КОНСТАНТА РАВНОВНСИЯ РЕАКЦИИ 2H2S⇄ 2H2 + S2 — 41,9 КДж

ПРИ ПОВЫШЕНИИ ТЕМПЕРАТУРЫ

1) уменьшится

2) увеличится

3) не изменится

 

5. ПРИ ПОВЫШЕНИИ ДАВЛЕНИЯ И ПОСТОЯННОЙ ТЕМПЕРАТУРЕ РАВНОВЕСИЕ РЕАКЦИИ PCl5(Г) ⇄ PCl3(Г) + Cl2

1) не смещается

2) смещается влево

3) смещается вправо

 

 

ТЕСТОВЫЕ ЗАДАНИЯ

По теме «Химическое равновесие»

 

Вариант №4

 

1. КОНСТАНТА РАВНОВЕСИЯ РЕАКЦИИ CO + 2H2 ⇄ CH3OH + 113,13 кДж

ПРИ ПОВЫШЕНИИ ТЕМПЕРАТУРЫ

1) увеличится

2) уменьшится

3) не изменится

 

2. ДЛЯ СМЕЩЕНИЯ РАВНОВЕСИЯ РЕАКЦИИ N2 + 3H2 ⇄ 2NH3 + Q ВПРАВО НЕОБХОДИМО

1) увеличить Р, увеличить Т, уменьшить [NH3]

2) уменьшить Р, уменьшить Т, уменьшить [NH3]

3) уменьшить Р, увеличить Т, уменьшить [NH3]

4) увеличить Р, уменьшить Т, уменьшить [NH3]

 

3. КС РЕАКЦИИ H2 + I2 ⇄ 2HI ПРИ 444оС РАВНА 50. ПРИ КОНЦЕНТРАЦИЯХ РЕАГИРУЮЩИХ ВЕЩЕСТВ [Н2]=1 моль/л, [I2]= 5 моль/л, [HI]=10 моль/л

1) реакция протекает слева направо

2) реакция протекает справа налево

3) наступает химическое равновесие

 

4. ПРИ УМЕНЬШЕНИИ ОБЪЕМА В 2 РАЗА ПРИ Т=CONST КОНСТАНТА РАВНОВЕСИЯ РЕАКЦИИ CO2 + H2 ⇄ CO+ H2O

1) не изменится

2) увеличится в 2 раза

3) увеличится в 4 раза

4) уменьшится в 2 раза

 

5. ПРИ СИНТЕЗЕ H2 + Cl2 ⇄ 2HCl РАВНОВЕСНЫЕ КОНЦЕНТРАЦИИ РЕАГИРУЮЩИХ ВЕЩЕСТВ СОСТАВИЛИ [H2]=1 моль/л, [Cl2]= 1моль/л.

ПРИ УВЕЛИЧЕНИИ КОНЦЕНТРАЦИИ В 10 РАЗ СКОРОСТЬ ПРЯМОЙ РЕАКЦИИ

1) увеличится в 10 раз

2) уменьшится в 10 раз

3) увеличится в 100 раз

4) уменьшится в 100 раз

ТЕСТОВЫЕ ЗАДАНИЯ

По теме «Поверхностные явления. Катализ»

 

Вариант 1

Адсорбция- это

а) самопроизвольный процесс, идущий за счет увеличения свободной энергии

б) самопроизвольный процесс, идущий за счет уменьшения свободной энергии

в) не самопроизвольный процесс, требующий затраты работы из окружающей среды.

 

Термодинамическое уравнение, изотермы адсорбции Гиббса

, если , то

а) адсорбция не идет

б) адсорбция протекает хорошо

в) происходит десорбция

 

Соотнесите определения

1) гомогенный катализ   2) гетерогенный катализ   3) автокатализ   4) отрицательный катализ а) катализ в присутствии ингибиторов б) катализ, при котором катализатор и реагирующие вещества находятся в разных фазах в) катализ, при котором катализатор возникает в ходе химической реакции г) катализ, при котором катализатор и реагирующие вещества находятся в одинаковых фазовых состояниях

 

Вставьте пропущенное слово.

Катализаторы увеличивают скорость реакции, потому что __________энергию активации

 

Механизм гомогенного катализа представляет теория промежуточных соединений. Выберите правильный ответ для реакции

а) А+В+К®АВК®АВ+К в) А+В+К®АВ+К

б) А+К®АК г) В+К®ВК

АК+В®АВ+К ВК+А®АВ+К

 

 

 

ТЕСТОВЫЕ ЗАДАНИЯ


Катализ — это… Что такое Катализ?

Ката́лиз (греч. κατάλυσις восходит к καταλύειν — разрушение) — избирательное ускорение одного из возможных термодинамически разрешенных направлений химической реакции под действием катализатора(ов), который многократно вступает в промежуточное химическое взаимодействие с участниками реакции и восстанавливает свой химический состав после каждого цикла промежуточных химических взаимодействий.[1]


Термин «катализ» был введён в 1835 году шведским учёным Йёнсом Якобом Берцелиусом.

Явление катализа распространено в природе (большинство процессов, происходящих в живых организмах, являются каталитическими) и широко используется в технике (в нефтепереработке и нефтехимии, в производстве серной кислоты, аммиака, азотной кислоты и др.). Большая часть всех промышленных реакций — каталитические.

Основные принципы катализа

Катализатор изменяет механизм реакции на энергетически более выгодный, то есть снижает энергию активации. Катализатор образует с молекулой одного из реагентов промежуточное соединение, в котором ослаблены химические связи. Это облегчает его реакцию со вторым реагентом. Важно отметить, что катализаторы ускоряют обратимые реакции, как в прямом, так и в обратном направлениях.

Типы катализа

По влиянию на скорость реакции катализ многие источники делят на положительный (скорость реакции растет) и отрицательный (скорость реакции падает). В последнем случае происходит процесс ингибирования, который нельзя считать ‘отрицательным катализом’, поскольку ингибитор в ходе реакции расходуется.

Катализ бывает гомогенным и гетерогенным (контактным). В гомогенном катализе катализатор состоит в той же фазе, что и реактивы реакции, в то время, как гетерогенные катализаторы отличаются фазой.

Гомогенный катализ

Примером гомогенного катализа является разложение пероксида водорода в присутствии ионов йода. Реакция протекает в две стадии:

H2О2 + I → H2О + IO H2О2 + IO → H2О + О2 + I

При гомогенном катализе действие катализатора связано с тем, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений, это приводит к снижению энергии активации.

Гетерогенный катализ

При гетерогенном катализе ускорение процесса обычно происходит на поверхности твердого тела — катализатора, поэтому активность катализатора зависит от величины и свойств его поверхности. На практике катализатор обычно наносят на твердый пористый носитель.

Механизм гетерогенного катализа сложнее, чем у гомогенного. Механизм гетерогенного катализа включает пять стадий, причем все они обратимы.

  1. Диффузия реагирующих веществ к поверхности твердого вещества
  2. Физическая адсорбция на активных центрах поверхности твердого вещества реагирующих молекул и затем хемосорбция их
  3. Химическая реакция между реагирующими молекулами
  4. Десорбция продуктов с поверхности катализатора
  5. Диффузия продукта с поверхности катализатора в общий поток

Примером гетерогенного катализа является окисление SO2 в SO3 на катализаторе V2O5 при производстве серной кислоты (контактный метод).

Носитель катализатора

Металлическая платина (показана стрелками), стабилизированная на носителе — оксиде алюминия

Носитель катализатора, иначе подложка (катализатора) (англ. carrier или support) — инертный или малоактивный материал, служащий для стабилизации на его поверхности частиц активной каталитической фазы.

Роль носителя в гетерогенном катализе состоит в предотвращении агломерации или спекания активного компонента, что позволяет поддерживать высокую площадь контакта активного вещества (см. активная каталитическая фаза) и реагентов. Количество носителя, как правило, гораздо больше количества нанесенного на него активного компонента. Основными требованиями к носителям являются большая площадь поверхности и пористость, термическая стабильность, химическая инертность, высокая механическая прочность. В ряде случаев носитель влияет на свойства активной фазы (эффект «сильного взаимодействия металл–носитель»). В качестве носителей применяют как природные (глины, пемза, диатомит, асбест и др.), так и синтетические материалы (активные угли, силикагель, алюмосиликаты, оксиды алюминия, магния, циркония и др.)[2].

Химия катализа

Химия катализа изучает вещества, изменяющие скорость химических реакций. Вещества, замедляющие реакции, называются ингибиторами. Ферменты — это биологические катализаторы. Катализатор не находится в стехиометрических отношениях с продуктами и регенерируется после каждого цикла превращения реагентов в продукты. Несмотря на появление новых способов активации молекул (плазмохимия, радиационное и лазерное воздействия и другие), катализ − основа химических производств (относительная доля каталитических процессов составляет 80-90 %).

Реакция, накормившая человечество (решение проблемы связанного азота) — цикл Габера-Боша. Аммиак получают с катализатором — пористым железом. Протекает при Р = 30 МПа и Т = 420—500 °C

2 + N2 = 2NH3

Водород для синтеза NH3 получают путем двух последовательных каталитических процессов: конверсии СН4(СН4 + Н2О → СО + 3Н2) на Niкатализаторах и конверсии образующегося оксида углерода (СО + Н2О → СО2 + Н2). Для достижения высоких степеней превращения последнюю реакцию осуществляют в две стадии: высокотемпературная (315—480 °C) — на FeCrоксидных катализаторах и низкотемпературная (200—350 °C) — на CuZnоксидных катализаторах. Из аммиака получают азотную кислоту и другие соединения азота — от лекарств и удобрений до взрывчатых веществ.

Различают катализы »гомогенный, гетерогенный, межфазный, мицеллярный, ферментативный.

Энергия активации E каталитических реакций значительно меньше, чем для той же реакций в отсутствие катализатора. Например, для некаталитического разложения NH3 на N2 + Н2 E ~ 320 кДж/моль, для того же разложения в присутствии Pt Е ~ 150 кДж/моль. Благодаря снижению E обеспечивается ускорение каталитических реакций по сравнению с некаталитическими.

Литература

  • Боресков Г. К. Катализ. Вопросы теории и практики. — Новосибирск, 1987.
  • Гейтс Б. Химия каталитических процессов / Б. Гейтс, Дж. Кетцир.
  • Журнал «Кинетика и катализ».
  • Колесников И. М. Катализ и производство катализаторов. — М.: Техника, 2004. — 399 с.
  • Шуйт Г. — М.: Мир, 1981. — 551 с.
  • Яблонский Г. С., Быков В. И., Горбань А. Н. Кинетические модели каталитических реакций. — Новосибирск: Наука (Сиб. отделение), 1983. — 255 c.

См. также

Ссылки

Катализ и катализаторы — Энциклопедия wiki.MPlast.by

Катализ – это процесс изменения скорости химической реакции при помощи катализатороввеществ, принимающих участие в химической реакции, но в состав конечных продуктов не входящих и в результате реакции не расходующихся.

Одни катализаторы ускоряют реакцию (положительный катализ), другие – замедляют (отрицательный катализ). Отрицательный катализ называют ингибированием, а катализаторы, понижающие скорость химической реакции – ингибиторами.

Различают гомогенный и гетерогенный катализ.

Гомогенный катализ.

При гомогенном (однородном) катализе реагирующие вещества и катализатор находятся в одинаковом агрегатном состоянии и между ними отсутствует поверхность раздела. Пример гомогенного катализа – реакция окисления SO2 и SO3 в присутствии катализатора NO (реагирующие вещества и катализатор являются газами).

Гетерогенный катализ.

В случае гетерогенного (неоднородного) катализа реагирующие вещества и катализатор находятся в различных агрегатных состояниях и между ними существует поверхность (граница) раздела. Обычно катализатор – твердое вещество, а реагирующие вещества – жидкости или газы. Пример гетерогенного катализа – окисление NN3 до NO в присутствии Pt (катализатор – твердое вещество).

Механизм действия катализаторов

Действие положительных катализаторов сводится к понижению энергии активации реакции Еа(исх), действие ингибиторов – противоположное.

Так, для реакции 2HI = H2+I2 Еа(исх)=184 кДж/моль. Когда же эта реакция протекает в присутствии катализатора Au или Pt, то Еа(исх)=104 кДж/моль, соответственно.

Механизм действия катализатора при гомогенном катализе объясняется образованием промежуточных соединений между катализатором и одним из реагирующих веществ. Далее промежуточное соединение реагирует со вторым исходным веществом, в результате чего образуется продукт реакции и катализатор в первоначальном виде. Так как скорость обоих промежуточных процессов значительно больше скорости прямого процесса, то реакция с участием катализатора протекает значительно быстрее, чем без него.

Например, реакция:

SO2 +1/2 O2 = SO3 протекает очень медленно, а если использовать катализатор NO

то реакции NO +1/2О2 = NO2 и NO2 +SO2 = SO3 +NO протекают быстро.

Механизм действия катализатора при гетерогенном катализе иной. В этом случае реакция протекает вследствие адсорбции молекул реагирующих веществ поверхностью катализатора (поверхность катализатора неоднородна: на ней имеются так называемые активные центры, на которых и адсорбируются частицы реагирующих веществ.). Увеличение скорости химической реакции достигается, в основном, за счет понижения энергии активации адсорбированных молекул, а также, отчасти, за счет увеличения концентрации реагирующих веществ в местах, где произошла адсорбция.

Каталитические яды и промоторы.

Некоторые вещества снижают или полностью уничтожают активность катализатора, такие вещества называют каталитическими ядами. Например, небольшие примеси серы (0,1%) полностью прекращает каталитическое действие металлического катализатора (губчатого железа), использующегося при синтезе аммиака. Вещества, повышающие активность катализатора, называют промоторами. Например, каталитическая активность губчатого железа значительно возрастает при добавлении примерно 2% метаалюмината калия KAlO2.

Применение катализаторов

Действие катализатора избирательно и специфично. Это означает, что, применяя различные катализаторы, из одних и тех же веществ можно получить различные продукты. Это особенно характерно для реакций органических веществ. Например, в присутствии катализатора AlO3 происходит дегидратация этилового спирта, в присутствии Cu – дегидрирование:

Биологические катализаторы, принимающие участие в сложных химических превращениях, протекающих в организме, называются ферментами.

Катализаторы широко используются в производстве серной кислоты, аммиака, каучука, пластмасс и др. веществ.


 

Автор: Метельский А.В
Источник: Метельский А.В., Химия в Экзаменационных вопросах и ответах, Минск, изд. «Беларуская энцыклапедыя», 1999 год
Дата в источнике: 1999 год

Конспект урока химии в 11 классе по теме «Катализ и катализаторы»

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа №33» г. Череповца

Романова Надежда Сергеевна

учитель химии

Понятие о катализе и катализаторах

Методическая разработка урока

11 класс

Задачи урока:

Обучающие:

— актуализировать знания о скорости химических реакций и факторах, влияющих на нее;

  • дать понятие о механизме действия катализаторов;

  • расширить знания о катализе, катализаторах, ферментах;

  • показать практическую значимость изучаемого материала.

Развивающие:

— развивать умение самостоятельно работать с текстом учебника;

— развивать умение поиска информации в ресурсах Интернета;

— совершенствовать умение работать с разного вида информацией.

Воспитательные:

— формировать активную и сознательную позицию к усвоению нового материала;

  • развивать любознательность;

  • совершенствовать навыки самоорганизации труда и самообразования.

Тип урока: урок — изучение нового материала.

Метод проведения: частично — поисковый, информационный, с применением демонстрационных и лабораторных опытов.

Формы работы:

Фронтальная, работа в парах и группах.

Межпредметные связи:

Биология (белки – ферменты)

Требования программы:

знать: понятия «катализ», «катализаторы», «ферменты» и особенности их функционирования;

уметь: определять зависимость скорости химических реакций от различных факторов.

Реактивы и оборудование:

Химические стаканы, пробирки, шпатели, спиртовки, лучинки, ступка, пестик;

перманганат калия, щавелевая кислота, серная кислота, сульфат марганца, пероксид водорода, диоксид марганца, оксид меди (II), дихромат калия, вода, иод, алюминий, сырой и вареный картофель.

Дидактические материалы:

Задания для учащихся, график влияния катализатора на энергию активации реакции, инструкция по проведению лабораторного опыта, творческие задания для учащихся на дом.

Ход урока.

1. Оргмомент.

Здравствуйте, ребята! Садитесь. Начинаем урок.

На доске написаны слова русского философа, филолога, историка культуры Михаила Михайловича Бахтина. Прочитайте их. (Один ученик читает вслух.)

Истина не рождается в голове отдельного человека,

она рождается между людьми, совместно

ищущими истину в процессе их диалогического общения.

М.М.Бахтин

Поэтому мне хотелось бы, чтобы мы сегодня вместе думали, рассуждали, высказывали свое мнение. На уроке мы будем работать в парах, а также в группах по 4 человека.

2. Актуализация знаний.

На протяжении нескольких последних уроков мы изучаем раздел химии «химическая кинетика», в котором, как вы знаете, рассматриваются закономерности протекания химических реакций.

Кратко вспомним изученный материал. Задание каждой группе придумать вопрос для других учащихся по теме «скорость реакции». Время – 1 минута.

Приступаем к ответам на вопросы.

Примерные вопросы, которые могут придумать учащиеся.

  • Что такое скорость химической реакции?

  • Запишите формулу для ее нахождения.

  • Какие факторы влияют на скорость химической реакции?

  • Охарактеризуйте влияние природы реагирующих веществ на скорость реакции.

  • Как влияет поверхность соприкосновения на скорость реакции?

  • Сформулируйте правило Вант-Гоффа о влиянии температуры на скорость реакции.

  • Как влияет концентрация исходных веществ на скорость реакции?

3. Новый материал.

Молодцы, теорию знаете. Сегодня мы рассмотрим еще один фактор, влияющий на скорость химической реакции. Запишите в тетрадях число и тему урока — «Понятие о катализе и катализаторах».

Как вы думаете, что на уроке сегодня мы узнаем новое? Чему научимся?

Итак, задачи урока: расширить знания о катализе, катализаторах, ферментах, рассмотреть механизм действия катализаторов; провести исследование действия разных катализаторов на одно и то же вещество – перекись водорода.

3.1. Понятия «катализ», «катализатор», «каталитические реакции».

Катализ является одним из наиболее распространённых в химической практике методов ускорения химических реакций. Первые научные сведения о нем относятся к началу 19 в. В 1806 французские химики Н. Клеман и Ш. Дезорм открыли каталитическое действие оксидов азота на окисление сернистого газа в процессе получения серной кислоты. (На доске уравнение реакции, фамилии ученых) За этим последовало открытие и ряда других примеров резкого положительного действия веществ на скорость или возникновение химических реакций. В 2007г немецкому ученому Герхарду Эртлю (Gerhard Ert), который исследовал химические процессы на твердых поверхностях и внес значительный вклад в понимание природы катализа была присуждена Нобелевская премия по химии.

Демонстрация 1. (Al + I2)

Рассмотрим такой пример. В пробирке и ступке находится смесь порошков иода и алюминия.

Охарактеризуйте, пользуясь таблицей Менделеева и рядом напряжений металлов, их химическую активность. (Алюминий – достаточно активный металл, иод – галоген, для завершения слоя которому необходим всего один электрон.)

Запишите на доске и в тетрадях уравнение реакции их взаимодействия.

(На доске ученик записывает уравнение)

Однако, сейчас мы не наблюдаем никаких признаков реакции. Добавлю капельку воды. Мы наблюдаем возгонку иода. Алюминий в присутствии воды стал взаимодействовать с иодом, эта реакция сопровождается большим выделением тепла, что приводит к испарению части иода.

Сейчас мы с вами наблюдали изменение скорости взаимодействия алюминия и иода в присутствии воды. Подобные явления носят название «катализ».

Запишем в тетрадях определение катализа.

Катализ – изменение скорости химической реакции в присутствии веществ — катализаторов, которые участвуют в реакции, но не входят в состав продуктов.

Вода в данной реакции играет роль катализатора, изменяющего скорость реакции.

Найдите в учебнике определение термина «катализатор», прочитайте его. Сравните с термином, который нам ранее был известен. Какое есть отличие в формулировке?

Это название произошло от лат. «katа1уsis» — разрушение, разложение. С помощью катализатора происходит как бы разрушение длинного пути, который предстояло пройти исходным веществам, пока они не превратятся в продукты реакции.

Закройте учебники. Пользуясь определением «катализа», дайте свое определение «катализатора». Запомните его.

Катализатор – вещество, изменяющее скорость химической реакции, но остающееся неизменным после того, как химическая реакция заканчивается.

Более 70% всех химических превращений веществ, а среди новых производств более 90% осуществляется с помощью катализаторов.

Как в уравнении реакции обозначается катализатор?

Все реакции по наличию катализатора делятся на 2 группы. Обсудите в парах и закончите схему на основе имеющихся у вас знаний.

Реакции (по наличию катализатора)


(Каталитические(Некаталитические

реакции с участием катализаторов) реакции без участия катализаторов)

(Один учащийся отвечает)

3.2. Виды катализа.

Катализаторы оказывают различное влияние на скорость химических реакций: одни ускоряют, другие ее замедляют. Рассмотрим классификацию катализа.



Автокатализ – катализаторами являются продукты реакции.


Положительный – скорость реакции при добавлении катализатора возрастает


Отрицательный — скорость реакции при добавлении катализатора уменьшается



Катализ (по направленности процесса)

Как вы думаете, что обозначает каждый термин?

Отрицательный катализ часто называют ингибированием, а отрицательные катализаторы, снижающие скорость реакции, — ингибиторами.

Ингибитор – вещество, замедляющее скорость химической реакции, но состав и количество которого в конце реакции остаётся неизменным. Лат. «inhibere» — удерживать.

Какой катализ мы рассмотрели на примере взаимодействия алюминия с иодом? (положительный)

Какие вы можете назвать примеры отрицательных катализаторов?

(антиокислители, антистарители, ингибиторы коррозии)

Кроме того, есть еще одна классификация катализа.

Прочитайте текст учебника и закончите схему (с. 136-137)

Катализ (по фазовому составу исходных веществ и катализатора)

Гомогенный – катализ, при котором катализатор и реагирующие вещества находятся в одной фазе.


Гетерогенный – катализ, при котором реагирующие вещества и катализатор находятся в разных фазах

При гетерогенном катализе обычно катализатор — твердое вещество, а реагирующие вещества — газы или жидкости. Все реакции при гетерогенном катализе протекают на поверхности катализатора.

Зная другие факторы, влияющие на скорость реакции, предложите способ увеличения скорости гетерогенно-каталитического процесса с твердым катализатором, обоснуйте его.

(Необходимо катализатор измельчить, что увеличит поверхность соприкосновения, а значит, и скорость.)

Такой метод широко используется в промышленности и носит название «кипящего слоя».

Демонстрация 2.

Рассмотрим еще одну химическую реакцию.

В две пробирки помещаем перманганат калия, щавелевую кислоту, серную кислоту, всё перемешиваем. В один цилиндр помещаем в качестве катализатора сульфат марганца, перемешиваем.

2 KMnO4 + 5 H2C2O4 + 3 H2SO4 (MnSO4) → 2 MnSO4 + K2SO4 + 10 CO2 + 8 H2O

Какие выводы мы можем сделать по результатам данного опыта?

(Реакция в присутствии катализатора сульфата марганца идет намного быстрее. Данная реакция – пример гомогенного катализа.)

На доске и в раздаточном материале у вас на столах в задании 1 записаны 3 уравнения реакций. Определите вид катализа по уравнению. Работа в группе (1 мин).

NO

2SO2 + O2 → 2SO3 (гомогенный – все газы)

Cr2O3

4 NH3 + 5 O2 → 4 NO + 6 H2O (гетерогенный – оксид хрома твердый)

СuO + 2HCl = Cu Cl2 + H2O (некаталитическая реакция)

3.3. Свойства катализаторов.

Катализаторы обладают определёнными свойствами. Одно из них – избирательность действия. Избирательность – это действие катализатора на определенную химическую реакцию.

Прочитайте задание 2. Рассмотрите уравнения реакций. Укажите, как человек использует знания о избирательности катализаторов. Время на работу в группе – 1мин.

(применяя разные катализаторы, можно получить из одного и того же вещества разные продукты.)

3.4. Механизм действия

Давайте вспомним, что мы называем катализатором?

Каким образом катализатор влияет на скорость реакции? Рассмотрим механизм действия катализатора на примере гомогенного катализа.

Сейчас мы обратимся к графику в 3 задании. Внимательно рассмотрите график. Вспомните, что называется энергией активации. Какие характеристики показаны на осях? Расскажите по графику о влиянии катализатора на протекание реакции. (Время для работы в группе – 2 минуты)

(Катализатор увеличивает скорость реакции за счет того, что снижает энергию активации.)

За счет чего именно идет снижение Е активации? Рассмотрим опыт.

Демонстрация 3.

В химическую колбу наливаю пероксид водорода.

Почему перекись водорода нужно хранить в прохладном темном месте?

(нагревание и освещение ускоряют разложение перекиси)

Запишите уравнение реакции разложения пероксида водорода.

(1 пишет на доске)

Добавляю дихромат калия – катализатор, ускоряющий разложение перекиси.

Ребята, не противоречит ли увиденное нами изменение цвета раствора дихромата калия тому, что катализатор остается неизменным?

K2Cr2O7 + H2O2 → K2[Cr2O7 * H2O2] – промежуточное соединение

K2[Cr2O7 * H2O2] + H2O2 → K2Cr2O7 + 2 H2O + O2

Данный опыт пожтверждает теорию промежуточных соединений для объяснения механизма действия катализаторов. Согласно этой теории, катализатор вступает в реакцию с исходным веществом с образованием промежуточного продукта. Но к концу реакции катализатор восстанавливается в исходном состоянии.

3.5. Ферменты

Катализаторы влияют на скорость реакций не только в созданных человеком условиях, но и в живых клетках. Это ферменты.

Сообщение учащегося.

Задание детям:

Отметить в тетради что такое «фермент», условия действия ферментов, свойства ферментов.

3.6. Лабораторный опыт №9. «Получение кислорода разложением пероксида водорода с помощью оксида марганца (lV) и каталазы сырого картофеля».

Об одном катализаторе мы сегодня уже узнали – дихромат калия. Существуют и другие неорганические катализаторы, разлагающие перекись при обычных условиях, а также — фермент живых клеток – каталаза, оказывающая аналогичное действие.

У вас есть инструкция по проведению опыта. Вспомним правила ТБ при работе со спиртовкой, реактивами.

Далее – выполнение работы. Отчет о проделанной работе.

3.7. Таблица на с. 139 учебника.

Сравните эффективность действия различных катализаторов на процесс разложения перекиси водорода.

4. Подведение итогов.

Наш урок, ребята подходит к концу. Давайте подведем его итоги.

Что нового вы сегодня узнали на уроке?

Где на практике мы можем использовать знания по теме сегодняшнего урока?

Какие виды работ на уроке вам сегодня запомнились?

Оценки за урок.

5. Домашнее задание.

Учебник О.С. Габриеляна – 135-139с., №6,7 с.140

Дополнительное задание – творческое. Указать источник, из которого вы берете информацию.

1) Приведите примеры используемых в быту каталитических реакций. Назовите вещество, которое выполняет в них роль катализатора, и укажите тип катализатора.

2) Приготовить сообщение о нанокатализаторах.

3) Что такое промоторы? Где они применяются? Примеры промоторов.

4) Что такое каталитический яд? Привести примеры. Как защитить катализатор от действия каталитических ядов?

5) Какое значение имеет катализ? Приведите примеры его использования в разных отраслях промышленности.

6) Охарактеризуйте сущность теории промежуточных соединений в механизме работы катализатора.

7) Что такое ингибиторы? Приведите примеры. Для каких реакций требуется использование ингибиторов?

8) Приготовить сообщение о катализаторе – платине.

9) Написать стихотворение о катализаторах (ферментах).

10) Приготовить сообщение о пищеварительных ферментах организма человека.

11) Найдите в сети Интернет сказку о катализаторах. Проиллюстрируйте ее. (http://him.1september.ru/2003/30/13.htm)

12) Какие стиральные порошки содержат ферменты (энзимы)? Почему нужно придерживаться строго определенного интервала температур при стирке данными порошками?

13) Исследуйте, в каких свежих овощах и фруктах содержится фермент каталаза, расщепляющий перекись водорода.

Используемые Источники

http://www.xumuk.ru/bse/1231.html

http://center.fio.ru/vio/vio_22/resource/Print/art_1_16.htm

http://festival.1september.ru/articles/314245/

http://h3o.u-sonic.ru/teor/teors/6.1.5.htm

http://info.tatcenter.ru/science/57473.htm

(http://him.1september.ru/2003/30/13.htm)

Роль катализатора в химической реакции

Home  / Публикации / Статьи / ТЕОРИЯ ХИМИЧЕСКИХ РЕАКЦИЙ / Роль катализатора в химической реакции

Существующее до сих пор определение катализатора (Катализаторами называют вещества, увеличивающие скорость реакции. Катализатор проводит реакцию по пути, требующему меньшей энергии активации) не объясняет явление, а только регистрирует внешнее событие. Наше определение  помогает понять природу химических реакций и химической связи, физический  смысл явления катализа.

Условно катализаторы можно разбить на две группы.

К первой группе относятся вещества, которые в условиях реакции дают значительно больше активных частиц ведущих цепной процесс. Наглядные примеры щелочной и кислотный гидролиз сложных эфиров.

Ко второй группе относятся катализаторы, увеличивающие концентрацию промежуточного соединения. Эти катализаторы образуют комплекс с обеими исходными насыщенными молекулами и электронная изомеризация протекает через промежуточное образование химических связей с катализатором.

AB + K → ABK

ABK + CD → ABKCD

ABKCD → AC + BD + K

где AB и CD являются реагирующими веществами.

Ускорение реакции (каталитическое действие вещества) может быть объяснено следующим образом. В отсутствии  катализатора промежуточным соединением реакции является AB-CD, тогда как в присутствии катализатора — AB-K-CD. Скорость реакции в обоих случаях пропорциональна концентрации промежуточного соединения. Соотношение же между AB-CD (без катализатора) и AB-K-CD будет определяться энергией связи AB-CD и AB-K-CD.

Энергия связи обеих молекул с катализатором гораздо выше, чем их энергия связи друг с другом, поэтому концентрация промежуточных соединений с катализатором гораздо выше, следовательно, выше и скорость реакции.

Такой механизм действия катализатора типичен для биологических систем, в которых катализаторами обычно являются ферменты (энзимы), объединяющие вступающие в реакции молекулы в своих центрах.

Роль химической активации также возрастает с выигрышем энергии в ходе реакции, которая также идет на разрыв слабых связей, что позволяет понять физический смысл правил Семенова — Поляни.

Т.О., механизмы действия катализатора это :

  1. увеличение концентрации  активных частиц в реакционной смеси;
  2. образование промежуточных соединений с обоими из реагентов реакции;
  3. химическая активация.

Как правило, в каталитической реакции присутствуют несколько механизмов.

Теория промежуточного соединения о механизме катализа

Теория промежуточного соединения:

Эта теория была предложена Клементом и Десормесом в 1806 году. активное промежуточное соединение, которое затем вступает в реакцию с другими реагентами, давая конечный продукт, и катализатор регенерируют. Катализ — это явление, при котором скорость любой реакции искажается существованием сущности, которая сама остается неизменной химически в реакции.Сущность, изменяющая скорость реакции, называется катализатором. Согласно этой теории, предпочтительная реакция вызывается путем, включающим расположение нестационарного промежуточного соединения с последующим его распадом на предпочтительные конечные продукты с восстановлением катализатора.

В некоторых реакциях промежуточное соединение может быть легко обнаружено и даже выделено, тогда как в некоторых реакциях существование промежуточного соединения может быть доказано только сложными методами.На основе этой теории можно объяснить большое количество каталитических реакций. Некоторые примеры показаны ниже:

(i) Как было показано ранее, окисление SO 2 до SO 3 NO в присутствии кислорода или воздуха, как известно, происходит в следующей последовательности реакций:

2NO + O 2 → 2НО 2

2НО 2 + 2SO 2 → 2SO 3 + 2НО

2НО + 2SO 2 + O 2 → 2SO 3 + 2NO чистая реакция

Например, каталитическое окисление SO 2 до SO 2 в присутствии NO в качестве катализатора

2NO + O 2 → 2MO 2

NO 2 + SO 2 → SO 3 + NO

Эта теория объясняет тот факт, что катализатор остается неизменным по массе и химическому составу в конце реакции, а также его эффективность даже в небольших количествах.Многие каталитические реакции можно объяснить на основе этой теории.

Однако в отсутствие NO окисление происходит очень медленно. Тогда NO можно рассматривать как «переносчик кислорода».

(ii) При окислении йодидов перекисью водорода и окислении йодидов в кислой среде кислородом гипоиодистая кислота (или, точнее говоря, IO ) является промежуточным активным веществом, ответственным за реакцию.

H 2 O 2 (водн.) + I (водн.) → H 2 O (л) + IO (водн.)

H 2 O 2 (водн.) + IO (водн.) → H 2 O (l) + O 2 (г) + I (водн.)

(iii) В реакции бензола (C 6 H 6 ) и этаноилхлорид (CH 3 COCl) с образованием фенилметилкетона, C 6 H 5 COCH 3 ; безводный AlCl 3 используется в качестве катализатора.

C 6 H 6 (л) + CH 3 COCl → C 6 H 5 COCH 3 (л) + HCl (г)

AlCl 3 первая реакция с этаноилхлоридом с образованием промежуточного соединения, CH 3 CO , AlCl 4 , который затем реагирует с бензолом и образуется фенилметилкетон. AlCl 3 регенерируется.

CH 3 COCl + AlCl 3 → CH 3 CO .AlCl 4

Теория промежуточных соединений оказалась полезной во многих реакциях, особенно в гомогенном катализе. Соединение образуется с меньшим расходом энергии, чем это необходимо для реальной реакции.

(iii) Кислотный катализ гидролиза сложного эфира является другим примером, в котором предполагается образование промежуточного соединения. Можно рассмотреть случай гидролиза сложного эфира, такого как метилацетат, в воде.

CH 3 COOCH 3 + H 2 O → CH 3 COOH + CH 3 OH

Реакция протекает медленно, но присутствие кислоты заставляет реакцию протекать гораздо быстрее .

Проще говоря, мы можем сказать, что катализатор увеличивает скорость любой реакции, обеспечивая альтернативный путь для протекания реакции с более низкой энергией основания.

Промежуточные процессы и критические явления: теория, метод и прогресс дробных операторов и их приложения к современной механике

  • 1

    Олдхэм К. Б., Спаниер Дж. Дробное исчисление. Нью-Йорк-Лондон: Academic Press, 1974

    MATH Google ученый

  • 2

    Самко С.Г., Килбас А.А., Маричев О.И.Дробные интегралы и производные: теория и приложения. Швейцария: Издательство Gordon and Breach Science, 1993

    MATH Google ученый

  • 3

    Миллер К.С., Росс Б. Введение в дробное исчисление и дробно-дифференциальные уравнения. Нью-Йорк: John Wiley & Sons Inc., 1993

    MATH Google ученый

  • 4

    Мандельброт Б. Б. Фрактальная геометрия природы.Нью-Йорк: W. H. Freeman & Co., 1982

    MATH Google ученый

  • 5

    Росс Б. Дробное исчисление и его приложения. В кн .: Конспект лекций по математике. Берлин: Springer-Verlag, 1975, 457

    Google ученый

  • 6

    Батцер П. Л., Вестфальский университет. Введение в дробное исчисление. В: Hilfer R, ed. Приложения дробного исчисления в физике. Сингапур: World Scientific Publishing Co Pte Ltd, 2000.1–85

    Google ученый

  • 7

    Хильфер Р. Дробная временная эволюция. В: Hilfer R, ed. Приложения дробного исчисления в физике. Сингапур: World Scientific Publishing Co Pte Ltd, 2000

    Google ученый

  • 8

    Мандельброт Б. Б., Несс Дж. У. Дробные броуновские движения, дробные шумы и приложения. SIAM Rev, 1968, 10: 422–437

    MathSciNet Статья МАТЕМАТИКА Google ученый

  • 9

    Мандельброт Б. Б.Фракталы, форма, шанс и размерность. Сан-Франциско: W. H. Freeman & Co., 1977

    MATH Google ученый

  • 10

    Мандельброт Б. Б. Является ли природа фракталом? Наука, 1998, 279: 5352

    Google ученый

  • 11

    Мандельброт Б. Б. Некоторые математические вопросы, возникающие во фрактальной геометрии. В: Pier JP, Boston B, eds. Развитие математики 1950–2000 гг. Берлин: Birkhäuser-Verlag, 2000.795–811

    Google ученый

  • 12

    Мандельброт Б. Б. Темы фракталов в математике и физике. В: Луи Х. И. Чен и др., Ред. Вызовы 21 -го века Фундаментальные науки: математика и теоретическая физика. Сингапур: World Scientific Publishing Co Pte Ltd, 2000

    Google ученый

  • 13

    Ричардсон Л. Ф. Атмосферная диффузия показана на графике расстояние-сосед.Proc Roy Soc London A, 1926, 110: 709–737

    ADS Google ученый

  • 14

    Гил М., Бензи Р., Паризи Г. Турбулентность и предсказуемость в геофизической гидродинамике и климатической динамике. Амстердам: Северная Голландия, 1985

    Google ученый

  • 15

    Микин П. Фракталы, масштабирование и рост далеки от равновесия. В: Cambridge Nonlinear Science Series 5. Cambridge: Cambridge University Press, 1998

    Google ученый

  • 16

    Бэтчелор Г. К., Моффатт Х. К., Уорстер М. Г.Перспективы динамики жидкости — коллективное введение в текущие исследования. Кембридж: Издательство Кембриджского университета, 2000

    MATH Google ученый

  • 17

    Фриш У. Турбулентность. Кембридж: Издательство Кембриджского университета, 1995

    MATH Google ученый

  • 18

    Pier J-P, Boston B, eds. Развитие математики 1950–2000 гг. Берлин: Birkhäuser-Verlag, 2000

    MATH Google ученый

  • 19

    Metzler R, Klafter J.Руководство по случайному блужданию по аномальной диффузии: подход дробной динамики. Physics Reports, 2000, 339: 1–77

    MathSciNet. Статья ОБЪЯВЛЕНИЯ МАТЕМАТИКА Google ученый

  • 20

    Фихтенгольз Г. М. Курс дифференциала и интеграла. Пекин: People Education Press, 1964. 431–433

    Google ученый

  • 21

    Колванкар К. М. Дробная дифференцируемость нигде не дифференцируемых функций и размерностей.Диссертация на соискание ученой степени доктора философии. Университет Пуны, 1997 г.

  • 22

    Вест Б. Дж., Болонья М., Григолини П. Физика фрактальных операторов. Нью-Йорк: Springer-Verlag Inc., 2003

    Google ученый

  • 23

    Ноннемахер Т. Ф., Мецлер Р. Применение методов дробного исчисления к проблемам биофизики. В: Hilfer R, ed. Приложения дробного исчисления в физике. Сингапур: World Scientific Publishing Co Pte Ltd, 2000.377–427

    Google ученый

  • 24

    Family F, Daoud M, Herrmann HJ, et al. Ошеломляющие и неупорядоченные системы. Сингапур: World Scientific Publishing Co Pte Ltd, 2002

    Google ученый

  • 25

    Микин П. Фракталы, масштабирование и рост далеки от равновесия. В: Cambridge Nonlinear Science Series 5. Cambridge: Cambridge University Press, 1998

    Google ученый

  • 26

    Шлезингер М Ф.Фрактальное время и шум 1/ f в сложных системах. Ann N Y Acad Sci, 1987, 504

  • 27

    Шредер М. Фракталы, хаос, степенные законы. Сан-Франциско: W. H. Freeman & Co., 1991

    MATH Google ученый

  • 28

    Шиссель Х., Фридрих Ч., Блюмен А. Приложения к проблемам физики полимеров и реологии. В: Hilfer R, ed. Приложения дробного исчисления в физике. Сингапур: World Scientific Publishing Co Pte Ltd, 2000.331–376

    Google ученый

  • 29

    Глёкль В.Г., Ноненмахер Т.Ф. Дробные интегральные операторы и функция Фокса в теории вязкоупругости. Макромолекулы, 1991, 24: 6426–6434

    Статья. ОБЪЯВЛЕНИЯ Google ученый

  • 30

    Нонненмахер Т. Ф., Мецлер Р. О дробном исчислении Римана-Лиувилля и некоторых недавних приложениях. Фракталы, 1995, 3 (3): 557–566

    MathSciNet МАТЕМАТИКА Google ученый

  • 31

    Фридрих К.Функции релаксации и запаздывания модели Максвелла с дробными производными. Rheol Acta, 1991, 30: 151–158

    Статья Google ученый

  • 32

    Шиссель Х., Мецлер Р., Нонненмахер Т. Ф. Обобщенные вязкоупругие модели: их дробные уравнения с решениями. J Phys A: Math Gen, 1995, 28: 6567–6584

    Статья ОБЪЯВЛЕНИЯ МАТЕМАТИКА Google ученый

  • 33

    Glöckle W G, Nonnenmacher T. F.Представление недебаевских релаксационных процессов функцией Фокса. J Stat Phys, 1993, 71: 741–757

    Статья МАТЕМАТИКА ОБЪЯВЛЕНИЯ Google ученый

  • 34

    Хильфер Р. Дробное исчисление и регулярные вариации в термодинамике. В: Hilfer R, ed. Приложения дробного исчисления в физике. Сингапур: World Scientific Publishing Co Pte Ltd, 2000. 430–463

    Google ученый

  • 35

    Эль-Сайед А М А, Гаафар Ф М.Дробное исчисление и некоторые промежуточные физические процессы. Прикладная математика и вычисления, 2003, 144: 117–126

    MathSciNet Статья МАТЕМАТИКА Google ученый

  • 36

    Агарони А., Асикайнен Дж. Критические явления. В: Семья F, Дауд М., Херрманн Х. Дж., Стэнли Х. Э., ред. Масштабирование и неупорядоченные системы. Сингапур: World Scientific Publishing Co Pte Ltd, 2002. 1–79

    Google ученый

  • 37

    Xu M Y, Tan W C.Представление определяющего уравнения вязкоупругих материалов обобщенными сетками дробных элементов и его обобщенные решения. Наука в Китае, Series G, 2003, 46 (2): 145–157

    Статья Google ученый

  • 38

    Лам Л. Введение в нелинейную физику. Нью-Йорк: Springer-Verlag Inc., 1997

    MATH Google ученый

  • 39

    Cowan G A, Pines D, Meltzer D.Сложность: метафоры, модели и реальность. Менло-Парк: Аддисон-Уэсли, 1994

    MATH Google ученый

  • 40

    Россихин Ю.А., Шитикова М.В. Новый метод решения динамических задач дробной производной вязкоупругости. Int J Eng Sci, 2000, 39: 149–176

    Статья Google ученый

  • 41

    Россихин Ю.А., Шитикова М.В. Приложения дробного исчисления к динамическим задачам линейной и нелинейной наследственной механики твердого тела.Appl Mech Rev, 1997, 50 (1): 15–67

    MathSciNet Статья Google ученый

  • 42

    Матхай А. М., Саксена Р. К. Н-функция с приложениями в статистике и других дисциплинах. Нью-Дели: Wiley Eastern Limited, 1978

    MATH Google ученый

  • 43

    Шривастава Х.М., Гупта К.С., Гоял С.П. H-функции одной и двух переменных с приложениями. Нью-Дели: Издатели Южной Азии, 1982

    MATH Google ученый

  • 44

    Подлубный И.Дробные дифференциальные уравнения. Сан-Диего: Academic Press, 1999

    MATH Google ученый

  • 45

    Эрдейи А. Высшие трансцендентные функции. Нью-Йорк: Мак Гроу-Хилл, 1953

    Google ученый

  • 46

    Глекле В.Г., Ноненмахер Т.Ф. Дробные интегральные операторы и функция Фокса в теории вязкоупругости. Макромолекулы, 1991, 24: 6426–6434

    Статья. ОБЪЯВЛЕНИЯ Google ученый

  • 47

    Горенфло Р., Лучко Ю., Майнарди Ф.Функции Райта как масштабно-инвариантные решения уравнения диффузионной волны. Журнал Comp and App Math, 2000, 118: 175–191

    MathSciNet Статья МАТЕМАТИКА Google ученый

  • 48

    Xu M Y, Tan W. C. Теоретический анализ поля скоростей, поля напряжений и вихревой пелены обобщенной жидкости второго порядка с частичной аномальной диффузией. Sci China Ser A-Math, 2001, 44 (11): 1387–1399

    MATH Google ученый

  • 49

    Желто-коричневый W C, Xu M Y.Нестационарные потоки обобщенной жидкости второго сорта с моделью дробной производной между двумя параллельными пластинами. Acta Mech Sin, 2004, 20 (5): 471–476

    MathSciNet Google ученый

  • 50

    Tan W C, Pan W X, Xu M Y. Примечание о нестационарных потоках вязкоупругой жидкости с дробной моделью Максвелла между двумя параллельными пластинами. Int J Non-linear Mech, 2003, 38 (5): 645–650

    Статья МАТЕМАТИКА Google ученый

  • 51

    Tan W C, Xu M Y.Импульсное движение плоской пластины в обычной жидкости второго сорта. Коммуникация исследований механики, 2002, 29 (1): 3–9

    MathSciNet Статья МАТЕМАТИКА Google ученый

  • 52

    Tan W C, Xian F, Wei L. Точное решение нестационарного течения Куэтта обобщенной жидкости второго сорта. Chin Sci Bull, 2002, 47 (21): 1783–1785

    MathSciNet Статья Google ученый

  • 53

    Желто-коричневый W C, Xu M Y.Плоская поверхность внезапно пришла в движение в вязкоупругой жидкости с помощью дробной модели Максвелла. Acta Mech Sin, 2002, 18 (4): 342–349

    MathSciNet Google ученый

  • 54

    Jin H, Xu M Y. Некоторые примечания к «Об осевом потоке обобщенной жидкости второго порядка в трубе». В: Zhuang F G, Li J C, ред. Последние достижения в механике жидкости, Proc. из 4 -го Внутр. Couf. на J. Mech. Пекин: Цинхуа Унив. Press & Springer-Verlag, 2004

    Google ученый

  • 55

    Song D Y.Изучение реологических характеристик камеди пажитника с модифицированным Максвеллом. Китайский J Chem Eng, 2000, 8: 85–88

    Google ученый

  • 56

    Тонг Д. К., Ван Р. Х., Ян Х. С. Точные решения для течения неньютоновской жидкости с дробной производной в кольцевой трубе. Наука в Китае, Series G, 2005, 48 (4): 485–495

    Статья ОБЪЯВЛЕНИЯ Google ученый

  • 57

    Тонг Д. К., Лю И С.Точные решения для нестационарного вращательного течения неньютоновской жидкости в кольцевой трубе. Inter J of Engn Sci, 2005, 43 (3–4): 281–289

    MathSciNet Статья Google ученый

  • 58

    Тонг Д. К., Ван Р. Х. Анализ течения неньютоновских вязкоупругих жидкостей во фрактальном резервуаре с дробной производной. Наука в Китае, Series G, 2004, 47 (4): 424–441

    Статья ОБЪЯВЛЕНИЯ Google ученый

  • 59

    Хуан Дж. Кью, Хэ Джи, Лю Кью.Анализ общего течения жидкости второго порядка в двухцилиндровом реометре. Sci China Ser A-Math, 1997, 40 (2): 183–190

    Статья МАТЕМАТИКА Google ученый

  • 60

    Сонг Д. Й., Цзян Т. К. Исследование основного уравнения с дробной производной для вязкоупругих жидкостей — модифицированная модель Джеффриса и ее применение. Rheologica Acta, 1998, 27: 512–517

    Статья Google ученый

  • 61

    Нонненмахер Т. Ф., Мецлер Р.Применение методов дробного исчисления к задачам биофизики. В: Hilfer R, ed. Приложения дробного исчисления в физике. Сингапур: World Scientific Publishing Co Pte Ltd, 2000. 377–427

    Google ученый

  • 62

    Сюй М. Ю. Современное состояние фармакодинамики в исследованиях по биомеханике и ее применению (на китайском языке), Ян Гитонг, Цзинь Ченрен, ред. Гуанчжоу: Hua’nan University of Science and Engineering Press, 1990.33–37

    Google ученый

  • 63

    Вест Б. Дж., Гриффин Л. Аллометрический контроль походки человека. Фракталы, 1998, 6: 101–108

    Google ученый

  • 64

    FLeury V, Schwartz L. Ограниченная диффузией агрегация из-за напряжения сдвига как простая модель васкулогенеза. Фракталы, 1999, 7: 33–39

    Google ученый

  • 65

    Моравек З., Фиала Дж.Фрактальная динамика роста корня. Хаос, солионы и фракталы, 2004, 19: 31–34

    Статья МАТЕМАТИКА Google ученый

  • 66

    Xu M Y. Аналитическое решение для модели распределения и абсорбции лекарств в тонком кишечнике. Acta Mech Sinica, 1990, 6 (4): 316–323

    MATH ОБЪЯВЛЕНИЯ Google ученый

  • 67

    Сан Т., Микин П., Джоссанг Т. Минимальное рассеяние энергии и фрактальные структуры сосудистых систем.Фракталы, 1995, 3 (1): 123–153

    MATH Google ученый

  • 68

    Best B J. Фрактальная физиология и хаос в медицине. Нью-Йорк: World Scientific Publishing Co Pte Ltd, 1993

    Google ученый

  • 69

    Su H J, Xu M Y. Обобщенная вязкоупругая модель отолитовых органов с дробными порядками. Китайский журнал биомедицинской инженерии (на китайском языке), 2001, 20 (1): 46–52

    Google ученый

  • 70

    Liu J G, Xu M Y.Исследование на фракционной модели вязкоупругости кости черепа человека. Китайский журнал биомедицинской инженерии (на китайском языке), 2005, 24 (1): 12–16

    Google ученый

  • 71

    Лю Дж. И, Сюй М. Ю. Точное решение проблемы подвижной границы с частичной аномальной диффузией в устройствах для высвобождения лекарств. ЗАММ, 2004, 84 (1): 22–28

    MathSciNet Статья МАТЕМАТИКА Google ученый

  • 72

    Glöckle W G, Nonenmacher T. F.Подход дробного исчисления к динамике самоподобных белков. Биофизический журнал, 1995, 68: 46–53

    Статья ОБЪЯВЛЕНИЯ Google ученый

  • 73

    Толич-Норреликке И. М., Мунтяну Е. Л., Тон Г. и др. Аномальная диффузия в живых дрожжевых клетках. Phys Rev Lett, 2004, 93 (7): 078102

    Google ученый

  • 74

    Якушевич Л.В. Нелинейная динамика ДНК. В: Кристиансен П. Л., Соренсен М. П., Скотт А. С., ред.Нелинейная наука на заре 21 -го века. Берлин Гейдеберг: Springer-Verlag, 2000, 5 (19): 373–391

    Google ученый

  • 75

    Peng C K, Buldyrev S, Goldberg A. L, et al. Дальние корреляции в нуклеотидных последовательностях. Nature, 1992, 356: 168

    Статья ОБЪЯВЛЕНИЯ Google ученый

  • 76

    Стэнли Х. Э., Булдырев С., Гольдберг А. Л. и др. Статистическая механика в биологии: насколько повсеместны дальнодействующие корреляции.Physica A, 1994, 205: 214

    Статья ОБЪЯВЛЕНИЯ Google ученый

  • 77

    Восс Р. Эволюция дальних фрактальных корреляций и шум 1/ f в последовательностях оснований ДНК. Phys Rev Lett, 1992, 68 (25): 3805

    Статья ОБЪЯВЛЕНИЯ Google ученый

  • 78

    Булдырев С.В., Гольдбергер А.Л., Хавлин С. и др. Обобщенная модель леви-блуждания для нуклеотидных последовательностей ДНК.Phy Rev E, 1993, 47: 4514

    Статья ОБЪЯВЛЕНИЯ Google ученый

  • 79

    Аллегрини П., Буаччи М., Григолини П. и др. Дробное броуновское движение как нестационарный процесс: альтернативная парадигма для последовательностей ДНК. Phys Rev E, 1998, 57: 1–10

    Статья Google ученый

  • 80

    Бикель Д. Р., Вест Б. Дж. Мультипликативные и фрактальные процессы в эволюции ДНК. Фракталы, 1998, 6: 211–217

    Google ученый

  • 81

    Yu Z G, Anh V, Lau K S.Измерьте представление и мультифрактальный анализ полных геномов. Phys Rev E, 2002, 64: 031903

    Google ученый

  • 82

    Якушевич Л.В. Нелинейная физика ДНК. Нью-Йорк: Джон Вили, 1998

    MATH Google ученый

  • 83

    Майнарди Ф. Явления дробных релаксационно-колебательных и дробно-диффузионных волн. Хаос, солитоны и фракталы, 1996, 7 (9): 1461–1477

    MATH MathSciNet Статья Google ученый

  • 84

    Карпинтери А, Майнарди Ф.Фракталы и дробное исчисление в механике сплошной среды. Нью-Йорк: Springer Wien, 1997

    MATH Google ученый

  • 85

    Генри Б. И., Уирн С. Л. Фракционная реакция-диффузия. Physica A, 2000, 276 (3): 448–455

    MathSciNet Статья ОБЪЯВЛЕНИЯ Google ученый

  • 86

    Накаяма Т., Якубо К. Фрактальные концепции в физике конденсированного состояния. Берлин Гейдельберг: Springer-Verlag, 2003

    Google ученый

  • 87

    Компт А.Стохастические основы дробной динамики. Phy Rev E, 1996, 53 (4): 4191–4193

    Статья ОБЪЯВЛЕНИЯ Google ученый

  • 88

    Метцлер Р., Клафтер Дж. От случайных блужданий в непрерывном времени к уравнениям дробной диффузии. В: The Random Walk’s Guide to Anomalous Diffusion: A Fractional Dynamics Approach. Physics Reports, 2000, 339: 13–31

  • 89

    Metzler R, Glöckle W. G, Nonnenmacher T. F. Уравнение дробной модели для аномальной диффузии.Physica A, 1994, 211: 13–24

    Статья ОБЪЯВЛЕНИЯ Google ученый

  • 90

    Шонесси Б. О., Прокачча И. Аналитическое решение для диффузии на фрактальных объектах. Phys Rev Lett, 1985, 54: 455

    Статья ОБЪЯВЛЕНИЯ Google ученый

  • 91

    Силва П.К., Силваа Л.Р., Лензиб Е.К. и др. Аномальная диффузия и анизотропное нелинейное уравнение Фоккера-Планка. Physica A, 2004, 342: 16–21

    Статья ОБЪЯВЛЕНИЯ Google ученый

  • 92

    Силва П.К., Силваа Л.Р., Лензиб Е.К. и др.Уравнение дробной и нелинейной диффузии: дополнительные результаты. Physica A, 2004, 344: 671–676

    Статья ОБЪЯВЛЕНИЯ Google ученый

  • 93

    Комната Э., Джиона М. Уравнение дробной диффузии на фракталах: трехмерный случай и функция рассеяния. J Phy A, 1992, 25: 2107–2117

    MathSciNet Статья ОБЪЯВЛЕНИЯ Google ученый

  • 94

    Ноннемахер Т. Ф., Мецлер Р.Применение техники дробного исчисления к задачам биофизики. В: Hilfer R, ed. Приложения дробного исчисления в физике. Сингапур: World Scientific Publishing Co Pte Ltd, 2000, 378–427

    Google ученый

  • 95

    Дуань Дж. С., Сюй М. Ю. Распределение концентраций фракционной аномальной диффузии, вызванной мгновенным точечным источником. Applied Math Mech, 2003, 24 (11): 1302–1308

    MathSciNet МАТЕМАТИКА Google ученый

  • 96

    Цзян X Y, Xu M Y.Анализ дробной аномальной диффузии, вызванной мгновенным точечным источником в неупорядоченных фрактальных средах. Int J Non-linear Mechanics, 2006, 41: 156–165

    Статья Google ученый

  • 97

    Лензи Э. К., Мендес Г. А., Мендес Р. С. и др. Точные решения нелинейных неавтономных уравнений пространственно-дробной диффузии с поглощением. Phys Rev E, 2003, 67: 051109

    Google ученый

  • 98

    Bologna M, Tsallis C, Grigolini P.Аномальная диффузия, связанная с нелинейной дробной производной уравнением типа Фоккера-Планка: точные решения, зависящие от времени. Phys Rev E, 2000, 62: 2213–2218

    Статья ОБЪЯВЛЕНИЯ Google ученый

  • 99

    Баквар Э., Лучко Ю. Инвариантность дифференциального уравнения в частных производных дробного порядка относительно группы Ли масштабных преобразований. Журнал математического анализа и приложений, 1998, 227: 81–97

    MathSciNet Статья МАТЕМАТИКА Google ученый

  • 100

    Эльханбалы А.Явные решения одного класса уравнений диффузии. Хаос, солитоны и фракталы, 2002, 14: 965–974

    MATH MathSciNet Статья Google ученый

  • 101

    Ричард Г. Явления диффузии: случаи и изученные. Нью-Йорк: Kluwer Academic / Plenum Publishers, 2001

    Google ученый

  • 102

    Виттен Т.А., Сандер Л.М. Ограниченная диффузией агрегация, кинетическое критическое явление.Phys Rev Lett, 1981, 47: 1400–1403

    Статья ОБЪЯВЛЕНИЯ Google ученый

  • 103

    Вичек Т. Явления фрактального роста. 2-е изд. Сингапур: World Scientific Publishing Co Pte Ltd, 1992

    MATH Google ученый

  • 104

    Сринивасан К. Р. Фрактальная геометрия и мультифрактальные меры в механике жидкости. В: Lnmley J L, et al., Eds. Тенденции исследований в гидродинамике.Вудбери, Нью-Йорк: AIP Press, 2000. 263–285

    Google ученый

  • 105

    Микин П. Рост фрактальных агрегатов и их фрактальные меры. В: Domb C, Lebowitz J L, ред. Фазовые переходы и критические явления. Нью-Йорк: Academic Press, 1988. 355–489

    Google ученый

  • 901

    Argoul F, Arneodo A, Grasseau G и др. Автомодельность ограниченных диффузией агрегатов и кластеров электроосаждения.Phys Rev Lett, 1998, 61: 2558

    Статья ОБЪЯВЛЕНИЯ Google ученый

  • 107

    Эвертс К. Дж., Мандолброт Б. Б. Приложение Б. Мультифрактальная мера. В: Pettgen H O, Jurgens H, Saupe D, eds. Хаос и фракталы. Берлин: Springer-Verlag, 1992. 921–953

    Google ученый

  • 108

    Рив Ф. Неконсервативная лагранжева и гамильтонова механика. Phys Rev E, 1996, 53: 1890

    MathSciNet Статья ОБЪЯВЛЕНИЯ Google ученый

  • 109

    Рив Ф.Механика с дробными производными. Phys Rev E, 1997, 55 (3): 3581

    MathSciNet Статья ОБЪЯВЛЕНИЯ Google ученый

  • 110

    Флорес Э., Ослер Т. Дж. Таутохрона при произвольных потенциалах с использованием дробных производных. Am J Phys, 1999, 67: 718–722

    Статья ОБЪЯВЛЕНИЯ Google ученый

  • 111

    Агравал О. П. Формулировка уравнений Эйлера-Лагранжа для дробно-вариационных задач.Приложение J Math Anal, 2002, 272: 368–379

    MATH Статья Google ученый

  • 112

    Ачар Б. Н., Ханнекен Дж. В., Энк Т. и др. Динамика дробного осциллятора. Physica A, 2001, 297: 361–367

    MathSciNet Статья ОБЪЯВЛЕНИЯ МАТЕМАТИКА Google ученый

  • 113

    Ласкин Н. Дробная квантовая механика и интегралы по траекториям Леви. Phys Lett A, 2000, 268: 298–305

    MATH MathSciNet Статья ОБЪЯВЛЕНИЯ Google ученый

  • 901

    Ласкин Н.Дробная квантовая механика. Phys Rev E, 2003, 62 (3): 3135–3145

    MathSciNet Статья ОБЪЯВЛЕНИЯ Google ученый

  • 115

    Ласкин Н. Фракталы и квантовая механика. Хаос, 2000, 10 (4): 780–790

    MATH MathSciNet Статья ОБЪЯВЛЕНИЯ Google ученый

  • 116

    Ласкин Н. Дробное уравнение Шредингера. Phys Rev E, 2002, 66: 056108

    Google ученый

  • 117

    Набер М.Дробное уравнение Шредингера по времени. Журнал математической физики, 2004, 45 (8): 3339–3352

    MATH MathSciNet Статья ОБЪЯВЛЕНИЯ Google ученый

  • 118

    Сидхарт Б. Г. Масштабная вселенная. Хаос, солитоны и фракталы, 2001, 12: 613–616

    MATH MathSciNet Статья Google ученый

  • 119

    Сиксденье Дж. М., Пенсон К. А., Соломон А. И. Когерентные состояния Миттаг-Леффлера.J Phys A: Math Gen, 1999, 32: 7543–7563

    MathSciNet Статья ОБЪЯВЛЕНИЯ МАТЕМАТИКА Google ученый

  • 120

    Боливар А.О. Квантование аномального броуновского движения. Phys Lett A, 2003, 307: 229–232

    MATH MathSciNet Статья ОБЪЯВЛЕНИЯ Google ученый

  • 121

    Шеперд К. К., Набер М. Дробные дифференциальные формы. J Math Phys, 2001, 42: 2203–2212

    MathSciNet Статья ОБЪЯВЛЕНИЯ МАТЕМАТИКА Google ученый

  • 901

    Дюран Л.Дробные операторы и специальные функции (I): функции Бесселя. J Math Phys, 2003, 44 (5): 2250–2265

    MATH MathSciNet Статья ОБЪЯВЛЕНИЯ Google ученый

  • 123

    Дюран Л. Дробные операторы и специальные функции (II): функции Лежандра. J Math Phys, 2003, 44 (5): 2266–2292

    MATH MathSciNet Статья ОБЪЯВЛЕНИЯ Google ученый

  • 124

    Карпинтери А, Корнетти П.Подход дробного исчисления к описанию локализации напряжений и деформаций во фрактальных средах. Хаос, солитоны и фракталы, 2003, 13: 85–94

    Статья Google ученый

  • 125

    Вест Б. Дж., Болонья М., Григолини П. Физика фрактальных операторов. Нью-Йорк: Springer-Verlag New York Inc., 2003. 1–35

    Google ученый

  • 126

    Рокко А., Вест Б. Дж. Дробное исчисление и эволюция фрактальных явлений.Physica A, 1999, 265: 536–546

    Статья Google ученый

  • 127

    Тюркотт Д. Л. Связь фракталов в геофизике с «Новой наукой». Хаос, солитоны и фракталы, 2004, 19: 255–258

    MATH Статья Google ученый

  • 128

    Бак П., Пачуски М. Динамика фракталов. Фракталы, 1995, 3 (3): 415

    MathSciNet МАТЕМАТИКА Google ученый

  • 129

    Линднер А., Бонн Д., Пуар Э. С. и др.Вязкая аппликатура в неньютоновских жидкостях. J Fluid Mech, 2002, 469: 237–256

    MathSciNet Статья ОБЪЯВЛЕНИЯ МАТЕМАТИКА Google ученый

  • 130

    Вольфрам С. Новый вид науки. Шампанское: Wolfram Media, 2002

    MATH Google ученый

  • 131

    Митчелл М. Является ли Вселенная универсальным компьютером? Science, 2002, 298: 65–68

    Статья. Google ученый

  • 132

    Palade L I, Attane P, Huilgol R R и др.Аномальное поведение устойчивости собственно инвариантного материального уравнения, которое обобщает модели с дробной производной. Inter J Eng Sci, 1999, 37: 315–329

    MathSciNet Статья Google ученый

  • Произошла ошибка при настройке пользовательского файла cookie

    Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


    Настройка вашего браузера для приема файлов cookie

    Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

    • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
    • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
    • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
    • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
    • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

    Почему этому сайту требуются файлы cookie?

    Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


    Что сохраняется в файле cookie?

    Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

    Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

    Произошла ошибка при настройке пользовательского файла cookie

    Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


    Настройка вашего браузера для приема файлов cookie

    Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

    • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
    • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
    • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
    • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
    • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

    Почему этому сайту требуются файлы cookie?

    Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


    Что сохраняется в файле cookie?

    Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

    Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

    Что такое промежуточная реакция? — Определение и примеры — Видео и стенограмма урока

    Это задание поможет вам оценить свои знания об определении и распространенных типах реакционноспособных промежуточных продуктов.

    Проезд

    Для этого задания внимательно прочтите и выберите лучший ответ, который завершает каждое из заданных утверждений.Для этого распечатайте или скопируйте эту страницу на чистый лист бумаги и обведите букву своего ответа.

    Множественный выбор


    1) Ниже приведены примеры промежуточных продуктов реакции, кроме __________.

    A. Карбоксил

    B. Карбокация

    К. Карбанион

    D. Свободные радикалы


    2) В органической химии карбокатион — это ион с __________ атомом углерода.

    А. отрицательно заряженный

    B. нейтрально заряженный

    С.положительно заряженный

    D. одинаково заряженный


    3) Как создается свободный радикал?

    A. Он синтезируется обработкой органического соединения сильным основанием.

    B. Он образуется, когда ковалентная связь разрывается, и каждый атом забирает один электрон из связи.

    C. Он возникает в результате потери двух электронов после разрушения химической связи.

    D. И A, и B


    4) Промежуточный продукт реакции — это начальная фаза химической реакции, которая затем вступает в реакцию с образованием продуктов.

    A. Верно

    B. Ложь


    5) Как создается карбокатион?

    A. Он синтезируется обработкой органического соединения сильным основанием.

    B. Он образуется, когда ковалентная связь разрывается, и каждый атом забирает один электрон из связи.

    C. Он возникает в результате потери двух электронов после разрушения химической связи.

    D. Ничего из вышеперечисленного


    6) Что из следующего ВЕРНО о карбанионе?

    А.Это чрезвычайно реактивный, но недолговечный.

    B. Реагирует с отрицательно заряженными частицами в химической реакции.

    C. Он образуется при обработке органического соединения сильной кислотой.

    D. Ничего из вышеперечисленного


    7) Трет-бутанол образует промежуточный продукт реакции от потери молекулы воды при __________.

    A. статические условия

    B. Условия равновесия

    C. основные условия

    D. кислые условия


    8) Как образуется карбанион?

    А.Он образуется при обработке органического соединения сильной кислотой.

    B. Он образуется, когда ковалентная связь разрывается, и каждый атом забирает один электрон из связи.

    C. Он возникает в результате потери двух электронов после разрушения химической связи.

    D. Он синтезируется обработкой органического соединения сильным основанием.

    Ключ ответа

    1. А
    2. С
    3. B
    4. B
    5. С
    6. А
    7. D
    8. D

    Теория переходного состояния | Введение в химию

    Учебная цель
    • Обобщите три основных особенности теории переходных состояний

    Ключевые точки
      • Теория переходного состояния успешно рассчитала стандартную энтальпию активации, стандартную энтропию активации и стандартную энергию Гиббса активации.
      • Между продуктами и реагентами существует переходное состояние.
      • Активированный комплекс представляет собой гибрид реагента и продукта с более высокой энергией. Он может превращаться в продукты или превращаться в реагенты.

    Термины
    • Теория переходного состояния Постулирует, что гипотетическое переходное состояние возникает после состояния, в котором химические вещества существуют как реагенты, но до состояния, в котором они существуют как продукты.
    • активированный комплекс — высокоэнергетическая разновидность, которая образуется во время переходного состояния химической реакции.

    Теория переходного состояния (TST) описывает гипотетическое «переходное состояние», которое возникает в пространстве между реагентами и продуктами химической реакции. Виды, которые образуются во время переходного состояния, известны как активированный комплекс. TST используется для описания того, как происходит химическая реакция, и основан на теории столкновений. Если константа скорости реакции известна, TST можно успешно использовать для расчета стандартной энтальпии активации, стандартной энтропии активации и стандартной энергии Гиббса активации.TST также называют «теорией активированного комплекса», «теорией абсолютной скорости» и «теорией абсолютной скорости реакции».

    Теория переходного состояния Активированный комплекс, который представляет собой своего рода гибрид реагента и продукта, существует на пике координаты реакции, в так называемом переходном состоянии.

    Постулаты теории переходного состояния

    Согласно теории переходного состояния, между состоянием, в котором молекулы существуют как реагенты, и состоянием, в котором они существуют как продукты, существует промежуточное состояние, известное как переходное состояние.Виды, которые образуются во время переходного состояния, представляют собой частицы с более высокой энергией, известные как активированный комплекс. TST постулирует три основных фактора, которые определяют, произойдет ли реакция. Эти факторы:

    1. Концентрация активированного комплекса.
    2. Скорость распада активированного комплекса.
    3. Механизм распада активированного комплекса; его можно либо превратить в продукты, либо «вернуться» обратно в реагенты.

    Этот третий постулат действует как своего рода уточнение того, что мы уже исследовали в нашем обсуждении теории столкновений. Согласно теории столкновений, успешное столкновение — это такое столкновение, при котором молекулы сталкиваются с достаточной энергией и с правильной ориентацией, так что происходит реакция. Однако, согласно теории переходного состояния, успешное столкновение не обязательно приведет к образованию продукта, а только к образованию активированного комплекса. Как только активированный комплекс образуется, он может продолжить свое превращение в продукты или снова превратиться в реагенты.

    Приложения в биохимии

    Теория переходного состояния наиболее полезна в области биохимии, где она часто используется для моделирования реакций, катализируемых ферментами в организме. Например, зная возможные переходные состояния, которые могут образоваться в данной реакции, а также зная различные энергии активации для каждого переходного состояния, становится возможным предсказать ход биохимической реакции и определить скорость и скорость ее реакции. постоянный.

    Показать источники

    Boundless проверяет и курирует высококачественный контент с открытой лицензией из Интернета.Этот конкретный ресурс использовал следующие источники:

    Каталитические механизмы и промежуточные продукты реакции на гидролитическом пути растительной бета-D-глюканглюкогидролазы

    Фон: Бета-D-глюканглюкогидролазы ячменя представляют собой гликозидгидролазы семейства 3, которые катализируют гидролитическое удаление невосстанавливающих глюкозильных остатков из бета-D-глюканов и бета-D-глюкоолигосахаридов.После завершения гидролиза глюкоза остается связанной в активном центре.

    Полученные результаты: Когда эпоксид кондуритола B и 2 ‘, 4’-динитрофенил 2-дезокси-2-фтор-бета-D-глюкопиранозид диффундируют в кристаллы фермента, они вытесняют связанную глюкозу и образуют ковалентные гликозил-ферментные комплексы через Odelta1 D285, который таким образом идентифицируется как каталитический нуклеофил.Негидролизуемый S-гликозильный аналог, 4 (I), 4 (III), 4 (V) -S-тритиоцеллогексаоза, также диффундирует в активный центр, а S-целлобиозидный фрагмент позиционирует себя на участках -1 и +1. Гликозидный атом S S-целлобиозидной части образует короткий контакт (2,75 A) с Oepsilon2 E491, который, вероятно, является каталитической кислотой / основанием. Глюкопиранозильные остатки S-целлобиозидного фрагмента не искажаются из низкоэнергетической конформации 4C (1), но глюкопиранозильное кольцо на +1 субсайте поворачивается и транслируется вокруг связи.

    Выводы: Рентгеновская кристаллография используется для определения трех ключевых промежуточных продуктов во время катализа бета-D-глюканглюкогидролазой. Перед началом нового гидролитического процесса связанный продукт (глюкоза) из предыдущей каталитической реакции вытесняется поступающим субстратом, и образуется новый комплекс фермент-субстрат.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *