Теория игр в жизни – Теория игр – ответы на главные вопросы

Теория игр – ответы на главные вопросы

Справедливый дележ

Мы знаем, что переговоры часто бывают сложными. Мы всегда ищем пути, которые позволят обеим сторонам достичь кооперативного исхода, несмотря на то что игра может порой напоминать дилемму заключенного. Один из способов — попытаться определить, какие вопросы разделяют игроков, и использовать процедуру распределения справедливости, чтобы определить, кто в каких вопросах выиграет. Нужно сделать так, чтобы каждый выиграл в том вопросе, который наиболее важен именно для него.

Вы не получите всего, что хотите, но вы можете получить то, что для вас наиболее важно, особенно если вы и ваш противник хотите разных вещей. Другими словами, обе стороны могут выиграть. Это и есть беспроигрышные решения.

Теория игр в повседневной жизни

Беспроигрышные решения могут применяться в повседневной жизни. Например, Алан Тейлор и я в нашей книге «Делим по справедливости, или Гарантия выигрыша каждому» («The Win-Win Solution: Guaranteeing Fair Shares to Everybody») рассматривали развод Дональда Трампа и его первой жены, Иваны. Мы показали, что каждый супруг мог получить свою выгоду, если бы они пришли к соглашению, по которому каждый бы получил именно то, чего желал больше всего.

Например, Ивана больше всего хотела получить дом в Коннектикуте, где выросли ее дети, а Дональд хотел оставить особняк во Флориде. Мы показали, как они могли бы поделить имущество, особенно недвижимость, чтобы каждый остался доволен. Фактически они так и поступили. Но во многих случаях участники не могут прийти к соглашению, потому что игроки не могут прийти к такой процедуре.

Это процедура, которая помогает разрешать конфликты. Мы часто видим, что конфликты так и остаются конфликтами, потому что каждая сторона противится сотрудничеству. Поэтому люди не могут прийти к соглашению. Разводы бывают очень тяжелыми — не только в плане финансовой дороговизны и денег, которые нужно платить юристам, то также в смысле эмоционального истощения. Это ситуации, в которых может помочь теория игр.

Логично использовать подобную процедуру, но многие люди о ней просто не знают. Они борются друг с другом, хотя могут найти компромисс, который всех устроит. Они переживают, что, если не будут бороться, они проиграют, потому что другой игрок будет вести нечестную игру. Поэтому им кажется, что они тоже не должны идти на компромисс, чтобы создать баланс. Но мы знаем, что есть ситуации, в которых оба игрока могут прийти к компромиссу и в итоге к относительному выигрышу. Эмоции также играют важную роль, потому что стороны начинают злиться друг на друга, а это мешает размышлять логически.

postnauka.ru

3 приёма из теории игр, которые улучшат вашу личную жизнь

Теория игр — математический метод анализа, позволяющий чётко предсказать последствия поступков, в том числе романтических. Судьбоносные встречи, любовь с первого взгляда, секреты успешных долговременных отношений идеально описываются теорией игр.

Чтобы не быть голословными, пройдёмся по распространённым ситуациям, которые переживает каждая пара, и проанализируем их с точки зрения математики. Результатом станет абсолютно точное понимание, как надо действовать, чтобы выиграть в любовной игре.

Когда можно соглашаться на секс на первом свидании

Это одна из самых частых дилемм, над которыми раздумывают девушки, встретившие, как им кажется, мужчину своей мечты.

Как это бывает

С одной стороны, мужчина прекрасен, первое свидание просто волшебно, вы очарованы друг другом настолько, что интимное продолжение рандеву кажется более чем естественным, но… А вдруг, если секс случится так быстро, мужчина подумает, что девушка слишком доступна, и разочаруется в ней? Окей. Но если притвориться недотрогой, вдруг он решит, что девушка слишком старомодна и скучна?

Какой вариант предпочесть, если каждый из них в одинаковой мере может быть как выигрышным, так и проигрышным?

Стандартный совет, даваемый в подобных случаях, звучит так: «Действуйте так, как велит сердце». Однако это неверно.

Что говорит теория игр

Британские экономисты (да-да, именно экономисты!) выяснили , почему женщине выгоднее растягивать период ухаживаний, откладывая первый секс на потом. И помогла им в этом именно теория игр.

Исследователи рассмотрели, какие стратегии выбирают мужчины и женщины на этапе ухаживаний. Собственно, ухаживания и рассматривались как игра, в которой выигрышем для мужчины считается секс, а для женщины — секс с «хорошим» мужчиной, заботливым и ответственным, с которым можно рассчитывать в том числе на длительные отношения.

Проанализировав стратегии, учёные пришли к, в общем-то, предсказуемому выводу. «Хорошие» мужчины в среднем склонны ухаживать дольше, чем «плохиши» — те, кто рассматривает женщину исключительно как сексуальный объект и способ самоутверждения (очередную звёздочку на фюзеляже).

А это значит, что девушке, нацеленной на серьёзные отношения, выгоднее откладывать секс.

Так она получает сразу два преимущества. Во-первых, у неё появляется время, чтобы понять, к какому именно типу относится её мужчина. Во-вторых, плохие партнёры на этапе затянувшегося ухаживания отсеиваются сами собой. А значит, если мужчина сходил на три или четыре платонических свидания, шанс, что он хороший, повышается.

Здесь, правда, стоит сделать важную ремарку. Вышеописанная модель отражает лишь один из вариантов игры, где выигрышем для женщины являются долгосрочные отношения. Если же девушка нацелена на иной выигрыш, к примеру страстный курортный роман без претензий на продолжение, ситуация меняется. В этом случае растягивать период ухаживаний нет смысла, поэтому секс на первом свидании вполне обоснован.

Важно лишь понимать, что именно является выигрышем именно для вас. И тогда пазл сложится.

Что лучше: поскандалить или простить

The Huffington Post рассмотрел ситуацию недопонимания, рано или поздно возникающего между партнёрами, и вывел вариант её максимально бескровного и взаимовыгодного решения.

Как это бывает

Представьте ситуацию: пятница, на часах 18:30, а на 20:00 у вас намечено свидание. Ради него вы уже отказались от предложений провести вечер с друзьями или роднёй. Как можно быстрее вернувшись домой с работы, вы приняли душ и теперь стоите перед шкафом, раздумывая, что бы надеть.

Человек, с которым вы идёте на свидание, важен для вас, вы хотите произвести на него впечатление, поэтому наряд выбираете тщательно. Тем более что у вас заказан столик в лучшем ресторане города, вы ждали этого дня с понедельника и теперь предвкушаете встречу.

В этот момент тренькает смартфон. «Прости, не могу разговаривать. На работе завал, давай встретимся в другой раз, позже перезвоню».

Теория игр и отношения

Разочарование, обида, даже злость — вот что вы чувствуете в этот момент. Что дальше? Кажется, что вариантов всего два.

  1. Гневно высказать партнёру всё, что вы думаете о нём и вашем испорченном вечере. Однако этот вариант чреват разрывом отношений, если партнёр откажется признавать вину и извиняться.
  2. Несмотря на бушующую в душе ярость, сделать вид, что ничего особенного не произошло. «Завал? Конечно, я понимаю, встретимся в другой раз». Но в этом варианте тоже есть риски: если вы будете раз за разом прощать такое пренебрежение вашими интересами, в конце концов вам сядут на шею.

Так как же поступить, чтобы не ущемить себя и не поставить под удар отношения?

Что говорит теория игр

В теории игр на этот случай имеется кейс под названием «дилемма заключённого». Его суть описывается несложной полицейской историей.

Положим, есть два сообщника, которых полиция поймала на месте преступления. Чтобы однозначно доказать их вину, правоохранителям требуется признание хотя бы одного. Подельников рассаживают по разным камерам и каждому озвучивают следующие условия:

  1. Если оба откажутся сотрудничать с полицией и будут молчать, каждый отсидит по шесть месяцев.
  2. Если каждый чистосердечно признается, обоим дадут по два года.
  3. Если признается только один, а второй будет молчать, то первого сразу же отпустят на свободу, а второму впаяют целых десять лет.

На первый взгляд кажется, что оптимальная стратегия — обоим дружно молчать (сотрудничать). Но это в теории. На практике же заключённые не общаются друг с другом, а значит, каждый из них не может отбрасывать риск того, что партнёр сдаст его с потрохами ради личной свободы. Если один признается, то и второму лучше признаваться, чтобы не получить максимальный срок.

С точки зрения теории игр, в этом случае оптимальный вариант — признаваться (то есть не сотрудничать друг с другом). Только таким образом каждый игрок гарантированно минимизирует свои возможные потери.

Однако тут есть важное но. Подобная стратегия — предавать и ждать предательства от партнёра — оправданна лишь в том случае, если речь идёт о краткосрочных отношениях. В «дилемме заключённого» подельники отказались от сотрудничества — и разбежались с минимальными потерями. Скандалить можно, только если вам важно отстоять свои права и сэкономить нервы (высказав всё, вам не придётся копить обиду и тратить лишнее время на переживания), а совместное будущее для вас — вопрос десятый.

Если же вы оба планируете продолжать отношения, наиболее выгодной становится честная игра, в которой вы повторяете действия партнёра.

То есть, пока он сотрудничает, сотрудничаете, а когда перестаёт — в свою очередь отказываетесь от сотрудничества.

В ситуации отменённого свидания наиболее рациональное решение, предлагаемое теорией игр, выглядит так. Вам следует выразить недовольство действиями отменившего рандеву партнёра (ведь тем самым он отказался от сотрудничества). Однако, если за этим последуют извинения (возвращение к сотрудничеству), партнёра стоит простить и забыть о досадном инциденте.

Как сохранить отношения надолго

«И жили они долго и счастливо» — некоторым парам удаётся этот трюк, некоторым нет. И здесь тоже важную роль играет та часть теории игр, которая говорит о грамотном сотрудничестве.

Как это бывает

Чем дольше вы живёте вместе, тем больше «дилемм заключённого» у вас накапливается. Вы не всегда понимаете друг друга, у каждого возникают обстоятельства, вынуждающие так или иначе ущемлять партнёра, поэтому без недоразумений и обид, увы, не обойтись. Что же делать, чтобы под этим грузом отношения не рухнули?

Что говорит теория игр

Ещё в 1984-м известный американский политолог Роберт Аксельрод издал книгу «Эволюция сотрудничества». В ней он сформулировал наиболее выигрышную стратегию, позволяющую сохранить долгосрочное деловое и политическое партнёрство. Но к личным отношениям подход Аксельрода тоже применим. В общих чертах стратегия выглядит примерно так:

1. Сотрудничайте с партнёром, пока он сотрудничает с вами

Соглашайтесь с ним, идите ему навстречу, ищите компромиссы, доверяйте и не изменяйте.

2. Выражайте недовольство, если сотрудничество прекращается

Если партнёр не выполнил данное вам обещание, в одностороннем порядке отменил запланированное обоими событие, нагрубил вам (вашим родным) или в чём-то обманул, важно чётко и недвусмысленно озвучить, что вы недовольны этим фактом. Это является своеобразным манифестом: вы тоже объявляете, что готовы отказаться от сотрудничества.

3. Прощайте

Если после вашего манифеста партнёр выразил желание вернуться к сотрудничеству — извинился, исправил ошибки — тоже возвращайтесь к сотрудничеству. В общем, ведите себя, как партнёр в предыдущем раунде игры, повторяйте его ходы.

4. Будьте открыты

Для взаимовыгодных отношений важно, чтобы партнёры понимали мотивы и намерения друг друга. Поэтому не стоит манипулировать, обманывать, следить, тайком читать переписку, обижаться «не скажу из-за чего, догадайся сам» и мстить исподтишка.

Чем более вы ясны и открыты, тем проще партнёру вас понимать. А понимание — тот самый ключик к сакраментальному «и жили они долго и счастливо», без чего немыслим любовный хеппи-энд.

Читайте также

lifehacker.ru

Стратег по жизни: как применять теорию игр каждый день | Futurist

Критическое мышление Автор: Арсений Михайловский |  25 декабря 2017, 10:50

Жизнь — это игра со своими правилами, участниками и стратегиями. Теория игр же в свою очередь является методичкой, рассказывающей о победных комбинациях в этой игре. О том, как применять теорию на практике, рассказывает «Футурист».

Сегодня мы можем встретить паттерны теории не только в экономике и математике, игры можно проецировать почти на любую сферу. Из необычного можно вспомнить применение теории в эволюции. Исследователи говорят, что игры существовали еще задолго до появления человека, а различными техниками пользовались представители животного мира. Ну а если даже животные могут применить стратегии игры, то и человеку это не должно составить труда.

Дилемма заключенного

Отличный пример того, как теория игр учит нас не быть эгоистом и искать выгоду даже в самых паршивых случаях. Попробуйте сейчас представить, что вы член известной банды грабителей. Вы со своим подельником решили ограбить два разных банка в одно и тоже время. К сожалению, полиции была дана наводка, и в ходе операции спецназ успешно ловит и вас, и второго грабителя. Вас повезли в одно отделение, а вашего подельника в другое. Во время допроса полиция предлагает сделку и несколько вариантов развития событий:

Вариант первый: вы даете показания против второго грабителя, который должен молчать и не давать вообще никаких показаний, после чего становитесь свободны, а вашему напарнику дают тюремный срок длиной в 10 лет.

Вариант второй: если и вы, и второй грабитель даете показания друг против друга, то вам обоим светит обычный срок по 2 года.

Вариант третий (он же самый благополучный): вы оба молчите — никаких показаний, никакого сотрудничества, но зато вам обоим дадут минимальный срок по полгода каждому.

И тут вы начинаете думать: если я стучу на подельника, то самое худшее случается только в том случае, если он также донесет на меня. То есть по два года каждому. Но самым перспективным окажется молчание и мое, и моего приятеля. Но вот в чем проблема: промолчит ли он так же, как и я? Потери сводятся к минимуму лишь в одном случае, при котором вы оба, доверяя друг другу, делаете правильный выбор.

Вся сложность здесь заключается в том, что вы никак не можете контактировать со вторым грабителем, и вам приходится рассчитывать только на его этический внутренний кодекс.

Похожий социальный эксперимент был показан в фильме Кристофера Нолана «Темный Рыцарь». Джокер заложил по бомбе в два судна, на одном из которых плыли жители города, а на втором заключенные. У каждой группы был детонатор, активирующий бомбу на противоположном корабле. Обе «команды» находились в одинаковых условиях недоверия, но в итоге оба корабля не были взорваны, так как все пришли к самому рациональному выбору — не активировать детонатор.

В жизни же дела обстоят не так оптимистично, и общество пока далеко от всеобщего доверия. Например, вспомните, как долго могут обсуждаться решения нескольких стран о ядерном разоружении, хотя самым логичным выбором было бы принятие общего решения: раз и на всегда отказаться от атомных бомб.

Данную механику называют «игра с неполной информацией». В этом и есть сложность: множество неизвестных нам переменных и полная непрозрачность. В то время, как к играм с полной информацией мы можем отнести, например, шашки или шахматы: все знают правила, видна вариативность своих ходов и предполагаемые последствия.

Вот еще одна игра из теории, только уже с полной информацией.

Ультиматум

Представьте, что вы стали обладателем суммы в $100. Вам дали деньги не просто так, а с определенным условием: от вас требуется поделиться со вторым игроком. Более того, если игрока не устроит сумма вашей благотворительности, то вы оба останетесь ни с чем. Сколько денег вы считаете допустимым потратить на благотворительность, да еще и так, что бы самому не остаться с пустым кошельком? А сколько бы вы взяли денег, оказавшись на месте другого игрока?

По статистике игрок, которому предлагали сумму менее 30% от общей, отвергал подарок, после чего оба оказывались в проигрышном положении. Хотя, распоряжаясь рациональным мышлением, было бы логично согласиться на любую сумму. Такую позицию легко объяснить обычным человеческим эгоизмом. Но если вы выбрали быть достаточно щедрым в первом случае и согласились на любую сумму во втором, у нас для вас хорошие новости, вы не просто очень милый и порядочный, а плюс ко всему еще и достаточно умный.


Игра длиною в жизнь

В теории игр моделируются ситуации относительно конфликтного характера, и, благодаря пониманию структуры игр, мы лучше понимаем механизм конфликта, логику победителя и проигравшего. Подытоживая, зафиксируем основные принципы, которым нас учат игры:

— Ищи выгоду там, где на первый взгляд ее нет;

— Делая свой ход, будь рационален, отбрось эмоции;

— Анализируй все возможные развития событий;

— Всегда ставь себя на место второго игрока.

Всю теорию мы можем проецировать на нашу жизнь, рабочие отношения или даже семейные. Если вы со своей второй половинкой затеяли спор о том, куда пойти сегодня вечером — в кино или оперу — то вы вступаете в определенную игру, в которой, возможно, единственным верным решением будет пойти на компромисс, а то и вовсе уступить, что не будет считаться поражением. Помните, даже в самом, на первый взгляд, плачевном положении вы можете заработать немного очков.

Понравилась статья?

Поделись с друзьями!

  Поделиться 0   Поделиться 0   Твитнуть 0

Подпишись на еженедельную рассылку

futurist.ru

Теория игр: история и применение

games

Теория игр является математическим методом исследования оптимальных стратегий в играх. Под термином «игра» следует понимать взаимодействие двух или более сторон, которые стремятся реализовать свои интересы. У каждой стороны есть своя цель и своя стратегия, способная привести к победе или поражению, что зависит от того, каким образом ведут себя игроки. Благодаря теории игр появляется возможность найти максимально эффективную стратегию, беря во внимание представления о других игроках и их потенциале.

Теория игр представляет собой особый раздел исследования операций. В большинстве случаев методы теории игр используются в экономике, но иногда и в других социальных науках, например, в психологии, политологии, социологии, этике и некоторых других. С 70-х годов XX века она также стала использоваться и биологами с целью изучения поведения животных и теории эволюции. Кроме того, сегодня теория игр имеет очень большое значение в области кибернетики и искусственного интеллекта. Именно поэтому мы и хотим вам о ней рассказать.

История теории игр

Наиболее оптимальные стратегии в области математического моделирования учёные предлагали ещё в XVIII веке. В XIX веке задачи ценообразования и производства в условиях рынка с малой конкуренцией, впоследствии ставшие классическими примерами теории игр, рассматривались такими учёными, как Жозеф Бертран и Антуан Курно. А в начале XX столетия выдающимися математиками Эмилем Борелем и Эрнстом Цермело была выдвинута идея математической теории конфликта интересов.

Истоки математической теории игр следует искать в неоклассической экономике. Изначально основы и аспекты этой теории излагались в работе Оскара Моргенштерна и Джона фон Неймана «Теория игр и экономическое поведение» в 1944 году.

Представленная математическая область также нашла некоторое отражение и в социальной культуре. Например, в 1998 году Сильвия Назар (американская журналистка и писательница) выпустила книгу, посвящённую Джону Нэшу – лауреату Нобелевской премии по экономике и специалисту по теории игр. В 2001 году по мотивам данной работы сняли фильм «Игры разума». А ряд американских телешоу, таких как «NUMB3RS», «Alias» и «Friend or Foe» время от времени в своих эфирах также ссылаются на теорию игр.

Но отдельно следует сказать о Джоне Нэше.

В 1949 году им была написана диссертация на тему теории игр, а через 45 лет он был удостоен Нобелевской премии по экономике. В самых первых концепциях теории игр подвергались анализу игры антагонистического типа, в которых имеются игроки, выигравшие за счёт проигравших. Но Джон Нэш разработал такие аналитические методы, согласно которым все игроки либо проигрывают, либо выигрывают.

Разработанные Нэшем ситуации впоследствии назвали «равновесием по Нэшу». Отличаются они тем, что все стороны игры применяют наиболее оптимальные стратегии, благодаря чему и создаётся устойчивое равновесие. Сохранять равновесие очень выгодно для игроков, ведь в противном случае какое-то одно изменение может негативно сказаться на их положении.

Благодаря деятельности Джона Нэша теория игр получила мощный толчок в своём развитии. Кроме того, были подвергнуты серьёзному пересмотру математические инструменты экономического моделирования. Джон Нэш смог доказать, что классическая точка зрения на вопрос конкуренции, где каждый играет только за себя, не является оптимальной, и самыми эффективными стратегиями являются такие, в которых игроки делают лучше себе, изначально делая лучше другим.

Несмотря на то, что изначально в поле зрения теории игр находились и экономические модели, до 50-х годов прошлого века она была лишь формальной теорией, ограниченной рамками математики. Однако со второй половины XX века предпринимаются попытки её использования и в экономике, и в антропологии, и в технике, и в кибернетике, и в биологии. В период Второй мировой войны и по её окончании теорию игр начали рассматривать военные, разглядевшие в ней серьёзный аппарат в деле развития стратегических решений.

В период 60-70-х годов интерес к данной теории угас, невзирая даже на то, что она давала хорошие математические результаты. Но с 80-х годов начинается активное применение теории игр на практике, главным образом, в менеджменте и экономике. В течение же нескольких последних десятилетий актуальность её значительно выросла, а некоторые современные экономические направления и вовсе невозможно представить без неё.

Не будет лишним сказать также и о том, что существенный вклад в развитие теории игр внёс труд «Стратегия конфликта» 2005 года лауреата Нобелевской премии по экономике Томаса Шеллинга. В своей работе Шеллинг рассмотрел множество стратегий, которыми пользуются участники конфликтного взаимодействия. Данные стратегии совпали с тактиками конфликт-менеджмента и аналитическими принципами, применяющимися в конфликтологии, а также с тактиками, которые используются для управления конфликтами в организациях.

В психологической науке и ряде других дисциплин понятие «игра» имеет несколько иной смысл, чем в математике. Культурологическая интерпретация термина «игра» была представлена в книге «Homo Ludens» Йохана Хёйзинга, где автор толкует о применении игр в этике, культуре и правосудии, а также указывает на то, что сама игра существенно превосходит человека по возрасту, ведь и животные тоже склонны играть.

Также понятие «игра» можно встретить в концепции Эрика Бёрна, известного по книге «Люди, которые играют в игры». Здесь, правда, идёт речь об исключительно психологических играх, основой которых является трансакционный анализ.

Применение теории игр

Если говорить о математической теории игр, то в настоящее время она находится на стадии активного развития. Но математическая база по своей сути является очень затратной, по причине чего применяется она, главным образом, только если цели оправдывают средства, а именно: в политике, экономике монополий и распределения рыночной власти и т.д. В остальном же, теория игр применяется в исследованиях поведения людей и животных в огромном количестве ситуаций.

Как уже и было сказано, сначала теория игр развивалась в пределах границ экономической науки, благодаря чему стало возможным определить и интерпретировать поведение в различных ситуациях экономических агентов. Но позже область её применения значительно расширилась и стала включать в себя множество социальных наук, благодаря чему с помощью теории игр сегодня объясняется поведение человека в психологии, социологии и политологии.

Специалисты используют теорию игр не только для того чтобы объяснить и предсказать человеческое поведение – было предпринято множество попыток по использованию этой теории с целью разработать эталонное поведение. Кроме того, философы и экономисты долгое время при помощи неё старались как можно лучше понять хорошее или достойное поведение.

Таким образом, можно заключить, что теория игр стала настоящим переломным моментом в развитии множества наук, и сегодня является неотъемлемой частью процесса изучения различных аспектов поведения человека.

ВМЕСТО ЗАКЛЮЧЕНИЯ: Как вы заметили, теория игр довольно тесно взаимосвязана с конфликтологией – наукой, посвящённой изучению поведения людей в процессе конфликтного взаимодействия. И, на наш взгляд, эта область является одной из самых главных не только среди тех, в которых теория игр должна применяться, но и среди тех, которые должен изучать сам человек, ведь конфликты, как ни крути, являются частью нашей жизни.

Если у вас есть желание разобраться в том, каким образом лучше всего вести себя в конфликтах, и какие вообще существуют стратегии поведения в них, мы предлагаем вам пройти наш курс по самопознанию, который в полной мере предоставит вам такую информацию. Но, помимо этого, пройдя наш курс, вы сможете провести всестороннюю оценку своей личности вообще. А это значит, что вы будете знать и о том, как вести себя в случае конфликта, и каковы ваши личностные преимущества и недостатки, жизненные ценности и приоритеты, предрасположенности к работе и творчеству, и много чего ещё. В общем, это очень полезный и нужный инструмент для каждого, кто стремится к развитию.

Наш курс находится здесь – смело приступайте к самопознанию и совершенствуйте себя.

Мы желаем вам успехов и умения быть победителем в любой игре!

4brain.ru

5 простых примеров популярных игровых стратегий

Перевод статьи Люка Мак-Кинни из популярного американского блога Cracked.

Теория игр занимается тем, что изучает способы сделать лучший ход и в результате получить как можно больший кусок выигрышного пирога, оттяпав часть его у других игроков. Она учит подвергать анализу множество факторов и делать логически взвешенные выводы. Я считаю, её нужно изучать после цифр и до алфавита. Просто потому что слишком многие люди принимают важные решения, основываясь на интуиции, тайных пророчествах, расположении звёзд и других подобных. Я тщательно изучил теорию игр, и теперь хочу рассказать вам о её основах. Возможно, это добавит здравого смысла в вашу жизнь.

 

1. Дилемма заключенного

Берто и Роберт были арестованы за ограбление банка, не сумев правильно использовать для побега угнанный автомобиль. Полиция не может доказать, что именно они ограбили банк, но поймала их с поличным в украденном автомобиле. Их развели по разным комнатам и каждому предложили сделку: сдать сообщника и отправить его за решетку на 10 лет, а самому выйти на свободу. Но если они оба сдадут друг друга, то каждый получит по 7 лет. Если же никто ничего не скажет, то оба сядут на 2 года только за угон автомобиля.

Получается, что, если Берто молчит, но Роберт сдает его, Берто садится в тюрьму на 10 лет, а Роберт выходит на свободу.

Каждый заключенный — игрок, и выгода каждого может быть представлена в виде «формулы» (что получат они оба, что получит другой). Например, если я ударю тебя, моя выигрышная схема будет выглядеть так (я получаю грубую победу, ты страдаешь от сильной боли). Поскольку у каждого заключенного есть два варианта, мы можем представить результаты в таблице.

Практическое применение: Выявление социопатов

Здесь мы видим основное применение теории игр: выявление социопатов, думающих лишь о себе. Настоящая теория игр — это мощный аналитический инструмент, а дилетантство часто служит красным флагом, с головой выдающим человека, лишенного понятия чести. Люди, делающие расчеты интуитивно, считают, что лучше поступить некрасиво, потому что это приведет к более короткому тюремному сроку независимо от того, как поступит другой игрок. Технически это правильно, но только если вы недальновидный человек, ставящий цифры выше человеческих жизней. Именно поэтому теория игра так популярна в сфере финансов.

Настоящая проблема дилеммы заключенного в том, что она игнорирует данные. Например, в ней не рассматривается возможность вашей встречи с друзьями, родственниками, или даже кредиторами человека, которого вы посадили в тюрьму на 10 лет.

Хуже всего то, что все участники дилеммы заключенного действуют так, как будто никогда не слышали ней.

А лучший ход — хранить молчание, и через два года вместе с хорошим другом пользоваться общими деньгами.

2. Доминирующая стратегия

Это ситуация, при которой ваши действия дают наибольший выигрыш, независимо от действий оппонента. Что бы ни происходило — вы всё сделали правильно. Вот почему многие люди при «дилемме заключенного» считают: предательство приводит к «наилучшему» результату независимо от того, что делает другой человек, а игнорирование действительности, свойственное этому методу, заставляет всё выглядеть супер-просто.

Большинство игр, в которые мы играем, не имеет строго доминирующих стратегий, потому что иначе они были бы просто ужасны. Представьте, что вы всегда делали бы одно и то же. В игре «камень-ножницы-бумага» нет никакой доминирующей стратегии. Но если бы вы играли с человеком, у которого на руках надеты прихватки, и он мог показать только камень или бумагу, у вас была бы доминирующая стратегия: бумага. Ваша бумага обернет его камень или приведет к ничьей, и вы не сможете проиграть, потому что соперник не может показать ножницы. Теперь, когда у вас есть доминирующая стратегия, нужно быть дураком, чтобы попробовать что-нибудь другое.

3. Битва полов

Игры интереснее, когда у них нет строго доминирующей стратегии. Например, битва полов. Анджали и Борислав идут на свидание, но не могут выбрать между балетом и боксом. Анджали любит бокс, потому что ей нравится, когда льется кровь на радость орущей толпе зрителей, считающих себя цивилизованными только потому, что они заплатили за чьи-то разбитые головы.

Борислав хочет смотреть балет, потому что он понимает, что балерины проходят через огромное количество травм и сложнейших тренировок, зная, что одна травма может положить конец всему. Артисты балета — величайшие спортсмены на Земле. Балерина может ударить вас ногой в голову, но никогда этого не сделает, потому что ее нога стоит гораздо дороже вашего лица.

Каждый из них хочет пойти на своё любимое мероприятие, но они не хотят наслаждаться им в одиночестве, таким образом, получаем схему их выигрыша: наибольшее значение — делать то, что им нравится, наименьшее значение — просто быть с другим человеком, и ноль — быть в одиночестве.

Некоторые люди предлагают упрямо балансировать на грани войны: если вы, несмотря ни на что, делаете то, что хотите, другой человек должен подстроиться под ваш выбор или потерять все. Как я уже говорил, упрощённая теория игр отлично выявляет глупцов.

Практическое применение: Избегайте острых углов

Конечно, и у этой стратегии есть свои значительные недостатки. Прежде всего, если вы относитесь к вашим свиданиям как к «битве полов», она не сработает. Расстаньтесь, чтобы каждый из вас мог найти человека, который ему понравится. А вторая проблема заключается в том, что в этой ситуации участники настолько не уверены в себе, что не могут этого сделать.

По-настоящему выигрышная стратегия для каждого — делать то, что они хотят, а после, или на следующий день, когда они будут свободны, пойти вместе в кафе. Или же чередовать бокс и балет, пока в мире развлечений не произойдет революция и не будет изобретен боксерский балет.

4. Равновесие Нэша

Равновесие Нэша — это набор ходов, где никто не хочет сделать что-то по-другому после свершившегося факта. И если мы сможем заставить это работать, теория игр заменит всю философскую, религиозную, и финансовую систему на планете, потому что «желание не прогореть» стало для человечества более мощной движущей силой, чем огонь.

Давайте быстро поделим 100$. Вы и я решаем, сколько из сотни мы требуем и одновременно озвучиваем суммы. Если наша общая сумма меньше ста, каждый получает то, что хотел. Если общее количество больше ста, тот, кто попросил наименьшее количество, получает желаемую сумму, а более жадный человек получает то, что осталось. Если мы просим одинаковую сумму, каждый получает 50 $. Сколько вы попросите? Как вы разделите деньги? Существует единственный выигрышный ход.

Требование 51 $ даст вам максимальную сумму независимо от того, что выберет ваш противник. Если он попросит больше, вы получите 51 $. Если он попросит 50 $ или 51 $, вы получите 50 $. И если он попросит меньше 50 $, вы получите 51 $. В любом случае нет никакого другого варианта, который принесет вам больше денег, чем этот. Равновесие Нэша — ситуация, в которой мы оба выбираем 51 $.

Практическое применение: сначала думайте

В этом вся суть теории игр. Не обязательно выиграть и тем более навредить другим игрокам, но обязательно сделать лучший для себя ход, независимо от того, что подготовят для вас окружающие. И даже лучше, если этот ход будет выгоден и для других игроков. Это своего рода математика, которая могла бы изменить общество.

Интересный вариант этой идеи — распитие спиртного, которое можно назвать Равновесием Нэша с временной зависимостью. Когда вы достаточно много пьете, то не заботитесь о поступках других людей независимо от того, что они делают, но на следующий день вы очень жалеете, что не поступили иначе.

5. Игра в орлянку

В орлянке участвуют Игрок 1 и Игрок 2. Каждый игрок одновременно выбирает орла или решку. Если они угадывают, Игрок 1 получает пенс Игрока 2. Если же нет — Игрок 2 получает монету Игрока 1.

Выигрышная матрица проста…

…оптимальная стратегия: играйте полностью наугад. Это сложнее, чем вы думаете, потому что выбор должен быть абсолютно случайным. Если у вас есть предпочтения орла или решки, противник может использовать его, чтобы забрать ваши деньги.

Конечно, настоящая проблема здесь заключается в том, что было бы намного лучше, если бы они просто бросали один пенс друг в друга. В результате их прибыль была бы такой же, а полученная травма могла бы помочь этим несчастным людям почувствовать что-то, кроме ужасной скуки. Ведь это худшая игра из существующих когда-либо. И это идеальная модель для серии пенальти.

Практическое применение: Пенальти

В футболе, хоккее и многих других играх, дополнительное время — это серия пенальти. И они были бы интереснее, если бы строились на том, сколько раз игроки в полной форме смогут сделать «колесо», потому что это, по крайней мере, было бы показателем их физических способностей и на это было бы забавно посмотреть. Вратари не могут чётко определить движение мяча или шайбы в самом начале их движения, потому что, к огромному сожалению, в наших спортивных состязаниях роботы все еще не участвуют. Вратарь должен выбрать левое или правое направление и надеяться, что его выбор совпадет с выбором противника, бьющего по воротам. В этом есть что-то общее с игрой в монетку.

Однако обратите внимание, что это не идеальный пример сходства с игрой в орла и решку, потому что даже при правильном выборе направления вратарь может не поймать мяч, а нападающий может не попасть по воротам.

Итак, каково же наше заключение согласно теории игр? Игры с мячом должны заканчиваться способом «мультимяча», где каждую минуту игрокам один на один выводится дополнительный мяч/шайба, до получения одной из сторон определенного результата, который был показателем настоящего мастерства игроков, а не эффектным случайным совпадением.

В конце концов, теория игр должна использоваться для того, чтобы сделать игру умнее. А значит лучше.

www.factroom.ru

Теория игр: Введение / Habr

Что это такое, и с чем его едят.

Теория игр — это раздел математической экономики, изучающий решение конфликтов между игроками и оптимальность их стратегий. Конфликт может относиться к разным областям человеческого интереса: чаще всего это экономика, социология, политология, реже биология, кибернетика и даже военное дело. Конфликтом является любая ситуация, в которой затронуты интересу двух и более участников, традиционно называемых игроками. Для каждого игрока существует определенный набор стратегий, которые он может применить. Пересекаясь, стратегии нескольких игроков создают определенную ситуацию, в которой каждый игрок получает определенный результат, называемый выигрышем, положительным или отрицательным. При выборе стратегии важно учитывать не только получение максимального профита для себя, но так же возможные шаги противника, и их влияние на ситуацию в целом.
Краткая история развития.


Основы теории игр зародились еще в 18 веке, с началом эпохи просвящения и развитием экономической теории. Впервые математические аспекты и приложения теории были изложены в классической книге 1944 года Джона фон Неймана и Оскара Моргенштерна «Теория игр и экономическое поведение». Первые концепции теории игр анализировали антагонистические игры, когда есть проигравшие и выигравшие за их счет игроки. Не смотря на то, что теория игр рассматривала экономические модели, вплоть до 50-х годов 20 века она была всего лишь математической теорией. После, в результате резкого скачка экономики США после второй мировой войны, и, как следствие, большего финансирования науки, начинаются попытки практического применения теории игр в экономике, биологии, кибернетике, технике, антропологии. Во время Второй мировой войны и сразу после нее теорией игр серьезно заинтересовались военные, которые увидели в ней мощный аппарат для исследования стратегических решений. В начале 50-х Джон Нэш (на фото) разрабатывает методы анализа, в которых все участники или выигрывают, или терпят поражение. Эти ситуации получили названия «равновесие по Нэшу». По его теории, стороны должны использовать оптимальную стратегию, что приводит к созданию устойчивого равновесия. Игрокам выгодно сохранять это равновесие, так как любое изменение ухудшит их положение. Эти работы Нэша сделали серьезный вклад в развитие теории игр, были пересмотрены математические инструменты экономического моделирования. Джон Нэш показывает, что классический подход к конкуренции А.Смита, когда каждый сам за себя, неоптимален. Более оптимальны стратегии, когда каждый старается сделать лучше для себя, делая лучше для других. За последние 20 — 30 лет значение теории игр и интерес значительно растет, некоторые направления современной экономической теории невозможно изложить без применения теории игр.Большим вкладом в применение теории игр стала работа Томаса Шеллинга, нобелевского лауреата по экономике 2005 г. «Стратегия конфликта».
Как это работает

Как мне кажется, смысл теории игр проще всего пояснить на «Дилемме заключенного», классическая формулировка которой звучит так:
    Двое преступников, А и Б, попались примерно в одно и то же время на сходных преступлениях. Есть основания полагать, что они действовали по сговору, и полиция, изолировав их друг от друга, предлагает им одну и ту же сделку: если один свидетельствует против другого, а тот хранит молчание, то первый освобождается за помощь следствию, а второй получает максимальный срок лишения свободы (10 лет). Если оба молчат, их деяние проходит по более лёгкой статье, и они приговариваются к 6 месяцам. Если оба свидетельствуют против друг друга, они получают минимальный срок (по 2 года). Каждый заключённый выбирает, молчать или свидетельствовать против другого. Однако ни один из них не знает точно, что сделает другой. Что произойдёт?

Представив игру в виде матрицы мы получим:
Преступник Б
Стратегия «молчать»
Преступник Б
Стратегия «предать»
Преступник А
Стратегия «молчать»
Пол года каждому 10 Лет преступнику А
Отпустить преступника Б
Преступник А
Стратегия «предать»
10 Лет преступнику Б
Отпустить преступника А
2 года каждому

А теперь представим развитие ситуации, поставив себя на место заключенного А. Если мой подельник молчит, лучше его сдать и выйти на свободу. Если он говорит, то так же лучше все рассказать, и получить всего два года, вместо десяти. Таким образом, если каждый игрок выбирает, что лучше для него, оба сдадут друг друга, и получат два года, что не является идеальной ситуацией для обоих. Если бы каждый думал об общем благе, они бы получили всего по пол года.
Типы игр

Кооперативная\некооперативная игра

Кооперативной игрой является конфликт, в котором игроки могут общаться между собой и объединяться в группы для достижения наилучшего результата. Примером кооперативной игры можно считать карточную игру Бридж, где очки каждого игрока считаются индивидуально, но выигрывает пара, набравшая наибольшую сумму. Из двух типов игр, некооперативные описывают ситуации в мельчайших деталях и выдают более точные результаты. Кооперативные рассматривают процесс игры в целом. Не смотря на то, что эти два вида противоположны друг другу, вполне возможно объединение стратегий, которое может принести больше пользы, чем следование какой-либо одной.
С нулевой суммой и с ненулевой суммой

Игрой с нулевой суммой называют игру, в которой выигрыш одного игрока равняется проигрышу другого. Например банальный спор: если вы выиграли сумму N, то кто-то эту же сумму N проиграл. В игре же с ненулевой суммой может изменяться общая цена игры, таким образом принося выгоду одному игроку, не отнимаю ее цену у другого. В качестве примера здесь отлично подойдут шахматы: превращая пешку в ферзя игрок А увеличивает общую сумму своих фигур, при этом не отнимая ничего у игрока Б. В играх с ненулевой суммой проигрыш одного из игроков не является обязательным условием, хотя такой исход и не исключается.
Параллельные и последовательные

Параллельной является игра, в которой игроки делают ходы одновременно, либо ход одного игрока неизвестен другому, пока не завершится общий цикл. В последовательной игре каждый игрок владеет информацией о предидущем ходе своего оппонента до того, как сделать свой выбор. И совсем не обязательно информации быть полной, что подводит на с кледующему типу.
С полной или неполной информацией

Эти типы являются подвидом последовательных игр, и названия их говорят сами за себя.
Метаигры

Эти игры являются «леммами» теории игр. Они полезны не сами по себе, а в контексте какого-либо конфликата, расширяя его набор правил.

В любом конфликте типы объединяются, определяя таким образом правила игры, будь это кооперативная последовательная игра с нулевой суммой, или метаигра с неполной информацией.

Проблемы практического применения

Безусловно, следует указать и на наличие определенных границ применения аналитического инструментария теории игр. В следующих случаях он может быть использован лишь при условии получения дополнительной информации.

Во-первых, это тот случай, когда у игроков сложились разные представления об игре, в которой они участвуют, или когда они недостаточно информированы о возможностях друг друга. Например, может иметь место неясная информация о платежах конкурента (структуре издержек). Если неполнотой характеризуется не слишком сложная информация, то можно применять опыт подобных случаев с учетом определенных различий.

Во-вторых, теорию игр трудно применять при множестве ситуаций равновесия. Эта проблема может возникнуть даже в ходе простых игр с одновременным выбором стратегических решений.

В-третьих, если ситуация принятия стратегических решений очень сложна, то игроки часто не могут выбрать лучшие для себя варианты. Например, на рынок в разные сроки могут вступить несколько предприятий или реакция уже действующих там предприятий может оказаться более сложной, нежели быть агрессивной или дружественной.

Экспериментально доказано, что при расширении игры до десяти и более этапов игроки уже не в состоянии пользоваться соответствующими алгоритмами и продолжать игру с равновесными стратегиями.

К сожалению, ситуации реального мира зачастую очень сложны и настолько быстро изменяются, что невозможно точно спрогнозировать, как отреагируют конкуренты на изменение тактики. Тем не менее, теория игр полезна, когда требуется определить наиболее важные и требующие учета факторы в ситуации принятия решений в условиях конкурентной борьбы. Эта информация важна, поскольку позволяет учесть дополнительные переменные или факторы, имеющие возможность повлиять на ситуацию, и тем самым повысить эффективность решения.

Заключение

В заключение следует особо подчеркнуть, что теория игр является очень сложной областью знания. При обращении к ней надо соблюдать известную осторожность и четко знать границы применения. Слишком простые толкования таят в себе скрытую опасность. Анализ и консультации на основе теории игр из-за их сложности рекомендуются лишь для особо важных проблемных областей. Опыт показывает, что использование соответствующего инструментария предпочтительно при принятии однократных, принципиально важных плановых стратегических решений, в том числе при подготовке крупных кооперационных договоров.

Если тема окажется интересной для сообщества, следующих статьях я попытаюсь подробнее раскрыть типы игр и их стратегии.

habr.com

Как математика помогает разобраться в жизни — The Village

18 сентября в издательстве «Манн, Иванов и Фербер» выходит книга «Стратегические игры». Это учебник по теории игр, с помощью которого в математических концепциях могут разобраться даже люди без специального образования. The Village публикует отрывки из первой главы, где рассказывается о применении теории игр в реальной жизни.

При слове «игра» у вас может создаваться впечатление, что речь идет о поверхностном, малозначащем предмете в масштабной картине мира, изучающем такие тривиальные занятия, как азартные игры и спорт, тогда как в мире масса более важных вопросов — война, бизнес, образование, карьера и отношения. На самом деле стратегическая игра не просто игра; все вышеперечисленные вопросы и есть примеры игр, и теория игр помогает нам понять их суть.

Теория игр — это анализ или, если хотите, наука о таком интерактивном процессе принятия решений. Когда вы тщательно все взвешиваете, прежде чем что-либо предпринять, то есть осознаете свои цели или предпочтения, а также любые ограничения или требования к вашим действиям, и обдуманно выбираете свои действия, чтобы добиться максимального успеха исходя из собственных критериев, считается, что вы ведете себя рационально. Иными словами, теория игр — это наука о рациональном поведении в интерактивных ситуациях.

Мы не утверждаем, что теория игр научит вас секретам идеальной игры или поможет никогда не проигрывать. Во-первых, ваш соперник может прочитать те же книги; кроме того, вы оба не можете постоянно выигрывать. Еще важнее то, что многие игры содержат немало сложных и тонких нюансов, а большинство реальных ситуаций включают в себя достаточно своеобразных или случайных факторов. Теория игр не может предложить безошибочный рецепт действий; что она действительно делает, так это предоставляет ряд общих принципов анализа стратегических взаимодействий.

Мы сначала предложим вам ряд простых примеров, многие из которых позаимствованы из ситуаций, с которыми вы наверняка сталкивались в своей жизни. В каждом примере мы указываем важный стратегический принцип.

Вы записались на курс, который оценивается по средней успеваемости. Независимо от того, каких успехов вы добьетесь в абсолютном выражении, всего 40 % студентов получат оценки А и всего 40 % — оценки B. Следовательно, вы должны упорно трудиться, причем не только в абсолютном выражении, но и относительно того, насколько старательно трудятся ваши товарищи по учебе (на самом деле «враги по учебе» кажется в данном контексте более подходящим выражением). Это понимают все студенты, поэтому после первой же лекции они собираются на импровизированное совещание и договариваются не проявлять чрезмерного усердия. Спустя несколько недель искушение получить преимущество перед остальными, приложив чуть больше усилий, становится непреодолимым. В конце концов, ваши сокурсники не могут видеть все, что вы делаете, и не имеют реального влияния на вас, а выгода от повышения среднего балла весьма существенна. В итоге вы начинаете чаще заходить в библиотеку и оставаться там подольше. Проблема в том, что остальные делают то же самое. Следовательно, вы получите такую же оценку, как и в случае, если бы придерживались договоренности. Единственное отличие — все вы потратили на учебу больше времени, чем вам хотелось бы.

Это пример дилеммы заключенных. В ее оригинальной версии двух подозреваемых допрашивают по отдельности и предлагают каждому признать свою вину. Одному из них, скажем, подозреваемому А, говорят следующее: «Если другой подозреваемый (Б) не сознается, то вы можете заключить выгодную сделку и смягчить наказание, признав свою вину. Но если Б сознается, тогда вам тоже лучше это сделать, иначе суд будет особенно суровым по отношению к вам. Так что вам следует сознаться в любом случае». Подозреваемого Б убеждают с помощью аналогичных доводов. Столкнувшись с таким выбором, А и Б сознаются, хотя для обоих было бы лучше, если бы они молчали, поскольку у полиции нет против них никаких веских доказательств.

Предположим, вы делите квартиру с одним или несколькими студентами и заметили, что в ней заканчивается запас моющего средства, бумажных полотенец, овсяных хлопьев, пива и прочих нужных вещей. У вас есть договоренность распределять фактические расходы поровну, но поход в магазин требует времени. Готовы ли вы его выделить и сходить за покупками или понадеетесь на кого-то из товарищей, оставив себе больше времени для учебы или отдыха? Вы отправитесь в магазин за мылом или будете смотреть телевизор, чтобы не пропустить очередной сериал? Во многих подобных ситуациях игра в ожидание может продолжаться достаточно долго, прежде чем тот, кому действительно понадобится одна из этих вещей (как правило, пиво), не выдержит и пойдет в магазин. В итоге все это может привести к серьезным ссорам и даже разрыву отношений между соседями по комнате.

Такую стратегическую игру можно рассматривать с двух точек зрения. Согласно первой, перед каждым соседом по комнате стоит простой бинарный выбор — идти за покупками или нет. Вне сомнения, лучший вариант для вас — чтобы сосед пошел в магазин, а вы остались дома, а худший — обратный порядок действий. Если вы оба сделаете покупки без ведома друг друга, скажем, по пути домой из университета или с работы, произойдет ненужное дублирование и даже, возможно, порча некоторых продуктов; если никто не совершит покупок, могут возникнуть серьезные неудобства, а то и катастрофа местного масштаба, если вдруг в самый неподходящий момент закончится туалетная бумага.

Эта ситуация аналогична игре в труса, в которую имели обыкновение играть американские подростки. Два подростка мчались навстречу друг другу на автомобилях. Тот, кто сворачивал в сторону, чтобы избежать столкновения, считался проигравшим (трусом), а тот, кто продолжал ехать прямо, побеждал. Согласно второй, более интересной и динамичной точке зрения, та же ситуация рассматривается как «война на истощение», в которой каждый сосед по комнате пытается переждать остальных, рассчитывая на то, что у кого-то терпение лопнет раньше. Тем временем риск того, что в квартире закончится запас чего-то важного, что приведет к серьезным неудобствам или крупной ссоре, повышается. Каждый игрок допускает такое повышение до своей точки терпимости; проигрывает самый невыдержанный. Каждый пытается понять, насколько близко к грани катастрофы позволят ситуации развиваться другие участники игры. Отсюда и термин «балансирование на грани», которым обозначаются подобные стратегия и игра.

Когда вы собираетесь к кому-то на свидание, вы хотите предстать перед этим человеком с лучшей стороны и скрыть недостатки. Безусловно, вы не можете скрывать их бесконечно, особенно если ваши отношения будут развиваться, но вы полны решимости стать лучше или надеетесь, что к тому времени партнер примет вас таким, какой вы есть. Вы также знаете, что отношения будут бесперспективны, если вы не произведете хорошего первого впечатления: увы, второго шанса у вас уже не будет.

Разумеется, вы хотите узнать о человеке, с которым у вас свидание, все (и хорошее, и плохое). Но вам также известно, что если ваш партнер владеет техникой знакомства не хуже вас, то он (или она) тоже попытается показать свою лучшую сторону и скрыть худшую. Вы проанализируете ситуацию более тщательно и попробуете понять, какие признаки хороших качеств настоящие, а какие без труда можно имитировать, чтобы произвести благоприятное впечатление. Даже самый неряшливый человек может появиться на важной встрече в опрятной одежде, но обходительность и хорошие манеры, которые проявляются во множестве мелких деталей, трудно изображать весь вечер, если вы к ним не приучены. Цветы — относительно дешевый подарок; более дорогие подарки могут иметь определенную ценность, но не по своей сути, а как достоверные свидетельства того, чем этот человек готов ради вас пожертвовать. А «валюта», в которой исчисляется ценность такого подарка, может иметь разную значимость в зависимости от контекста: подаренный миллионером бриллиант может стоить в данном случае меньше, чем потраченное человеком на общение с вами время или какое-то дело, выполненное по вашей просьбе.

Вы должны осознавать, что ваш визави будет не менее тщательно анализировать информационное содержание ваших действий. Следовательно, вам необходимо делать то, что подаст достоверный сигнал о ваших истинных положительных качествах, а не о тех, которые можно имитировать. Это важно не только на первом свидании: раскрытие, сокрытие и сбор информации о глубинных намерениях другого человека актуальны на протяжении всего периода поддержания отношений. Вот история, которая это иллюстрирует.

В Нью-Йорке жили мужчина и женщина, имевшие отдельные квартиры с регулируемой арендной платой. Отношения пары достигли апогея, и они решили жить вместе. Женщина предложила мужчине отказаться от второй квартиры, но он, будучи экономистом, объяснил ей основополагающий принцип: всегда лучше иметь больше вариантов выбора. Возможно, вероятность их разрыва минимальна, но, учитывая даже небольшой риск, было бы разумно сохранить вторую квартиру с низкой арендной платой. Женщина восприняла это крайне негативно и немедленно разорвала с партнером отношения!

Экономисты, услышав эту историю, говорят, что она лишь подтверждает принцип целесообразности более широкого выбора. Однако стратегическое мышление предлагает несколько иное, более убедительное объяснение. Женщина не была уверена в серьезности намерений мужчины, и ее предложение стало блестящим стратегическим способом узнать правду. Слова ничего не стоят: кто угодно может сказать «Я тебя люблю». Если бы мужчина подкрепил слова делом и согласился разорвать договор аренды, это было бы конкретным свидетельством его любви, но его отказ стал веским доказательством обратного, а значит, женщина поступила правильно, разорвав с ним отношения.

Все эти примеры, рассчитанные на ваш непосредственный опыт, относятся к очень важному классу игр, в которых основной стратегический вопрос — манипулирование информацией. Стратегии, позволяющие передавать о себе выигрышную информацию, называются сигналами; а стратегии, которые побуждают людей действовать так, чтобы они достоверно раскрывали личную информацию, будь то хорошую или плохую, называются инструментами скрининга. Следовательно, предложение женщины отказаться от одной из квартир и явилось инструментом, поставившим мужчину перед выбором: либо отказаться от квартиры, либо продемонстрировать отсутствие серьезных намерений.


Обложка: Издательство «МИФ»

www.the-village.ru

Добавить комментарий

Ваш адрес email не будет опубликован.